# R/tri.sol.R In EfficientMaxEigenpair: Efficient Initials for Computing the Maximal Eigenpair

```#' @title Solve the linear equation (-Q-zI)w=v.
#' @description Construct the solution of linear equation (-Q-zI)w=v.
#'
#' @param Q The given tridiagonal matrix.
#' @param v The column vector on the right hand of  equation.
#' @param z The Rayleigh shift.
#' @return A solution sequence \eqn{w} to the equation (-Q-zI)w=v.
#'
#' @examples
#' a = c(1:7)^2
#' b = c(1:7)^2
#' c = rep(0, length(a) + 1)
#' c[length(a) + 1] = 8^2
#' N = length(a)
#' zstart = 6
#' Q = tridiag(b, a, -c(b[1] + c[1], a[1:N - 1] + b[2:N] + c[2:N], a[N] + c[N + 1]))
#' tri.sol(Q, z=zstart, v=rep(1,dim(Q)[1]))

#' @export
tri.sol = function(Q, z, v) {

N = dim(Q)[1] - 1
indx <- seq.int(N)
a = Q[cbind(indx + 1, indx)]
b = c(Q[cbind(indx, indx + 1)], -sum(Q[N + 1, ]))

if (sum(b[1:N] != a) == 0) {
mu0 = rep(1, N + 1)
} else {
mu0 = rep(1, N + 1)
mu0[2:(N + 1)] = cumprod(b[-(N + 1)]/a)
}

M = matrix(0, N + 1, N + 1)
nv = 1/(mu0 * b)

for (s in 1:(N + 1)) {

w0 = rep(0, N + 1)
w0[1:s] = rev(cumsum(rev(nv[1:s])))
M[s, ] = mu0 * w0

}

A = rep(1, N + 1)
A[1] = 0
B = rep(1, N + 1)
B[1] = 1

for (s in 2:(N + 1)) {
A[s] = -sum(M[s - 1, ] * (v + z * A))
B[s] = 1 - z * sum(M[s - 1, ] * B)
}

x = (sum(mu0 * (v + z * A)) - mu0[N + 1] * b[N + 1] * A[N + 1])/(mu0[N + 1] *
b[N + 1] * B[N + 1] - z * sum(mu0 * B))

w = A + x * B

return(w)
}
```

## Try the EfficientMaxEigenpair package in your browser

Any scripts or data that you put into this service are public.

EfficientMaxEigenpair documentation built on May 2, 2019, 2:17 a.m.