R/check_cdt_samples_convergence.R

Defines functions check_cdt_samples_convergence

Documented in check_cdt_samples_convergence

################################################################################
# check_cdt_samples_convergence runs a Gelman Rubin test to check convergence of
# the MCMC chain in coarseDataTools #
################################################################################

#' Checking convergence of an MCMC chain by using the Gelman-Rubin algorithm
#'
#' \code{check_cdt_samples_convergence} Checking convergence of an MCMC chain by
#'  using the Gelman-Rubin algorithm
#'
#' @param cdt_samples the \code{@sample} slot of a \code{cd.fit.mcmc} S4 object 
#' (see package \code{coarseDataTools})
#' @return TRUE if the Gelman Rubin test for convergence was successful, FALSE 
#' otherwise
#' @details{
#' This function splits an MCMC chain in two halves and uses the Gelman-Rubin 
#' algorithm to assess convergence of the chain by comparing its two halves.
#' }
#' @seealso \code{\link{estimate_R}}
#' @author Anne Cori
#' @importFrom coda gelman.diag
#' @export
#' @examples
#' \dontrun{
#' ## Note the following examples use an MCMC routine
#' ## to estimate the serial interval distribution from data,
#' ## so they may take a few minutes to run
#'
#' ## load data on rotavirus
#' data("MockRotavirus")
#'
#' ## estimate the serial interval from data
#' SI_fit <- coarseDataTools::dic.fit.mcmc(dat = MockRotavirus$si_data,
#'                      dist="G",
#'                      init_pars=init_mcmc_params(MockRotavirus$si_data, "G"),
#'                      burnin = 1000,
#'                      n.samples = 5000)
#'
#' ## use check_cdt_samples_convergence to check convergence
#' converg_diag <- check_cdt_samples_convergence(SI_fit@samples)
#' converg_diag
#'
#' }
#'
check_cdt_samples_convergence <- function(cdt_samples) {
  ## checking convergence of the MCMC by using the Gelman-Rubin algorithm 
  ## between the first and second half of the MCMC sample
  spl1 <- cdt_samples[seq_len(floor(nrow(cdt_samples) / 2)), ]
  spl2 <- cdt_samples[seq(ceiling(nrow(cdt_samples) / 2) + 1, nrow(cdt_samples)), ]
  GRD <- gelman.diag(as.mcmc.list(list(as.mcmc(spl1), as.mcmc(spl2))))
  # Is any of the potential scale reduction factors >1.1 
  # (looking at the upper CI)?
  # If so this would suggest that the MCMC has not converged well.
  if (any(GRD$psrf[, "Upper C.I."] > 1.1)) {
    warning("The Gelman-Rubin algorithm suggests the MCMC may not have converged
within the number of iterations (MCMC.burnin + n1) specified.
            You can visualise the full MCMC chain using: \n
            > par(mfrow=c(2,1))
            > plot(res$SI.Moments[,'Mean'], type='l', xlab='Iterations', 
ylab='Mean SI')
            > plot(res$SI.Moments[,'Std'], type='l', xlab='Iterations', 
ylab='Std SI'),
            where res is the output of estimate_R
            and decide whether to rerun for longer.")
    return(FALSE)
  } else {
    cat("\nGelman-Rubin MCMC convergence diagnostic was successful.")
    return(TRUE)
  }
}

Try the EpiEstim package in your browser

Any scripts or data that you put into this service are public.

EpiEstim documentation built on Jan. 7, 2021, 5:10 p.m.