Nothing
#' make_mcmc_control Creates a list of mcmc control parameters to be used in
#' \code{config$mcmc_control}, where \code{config} is an argument of the
#' \code{estimate_R} function. This is used to configure the MCMC chain used to
#' estimate the serial interval within \code{estimate_R} (with method
#' "si_from_data").
#'
#' @param burnin A positive integer giving the burnin used in the MCMC when
#' estimating the serial interval distribution.
#' @param thin A positive integer corresponding to thinning parameter; the MCMC
#' will be run for \code{burnin+n1*thin iterations}; 1 in \code{thin}
#' iterations will be recorded, after the burnin phase, so the posterior
#' sample size is n1.
#' @param seed An integer used as the seed for the random number generator at
#' the start of the MCMC estimation; useful to get reproducible results.
#' @param init_pars vector of size 2 corresponding to the initial values of
#' parameters to use for the SI distribution. This is the shape and scale for
#' all but the lognormal distribution, for which it is the meanlog and
#' sdlog.
#'
#' @details
#' The argument \code{si_data}, should be a dataframe with 5
#' columns:
#' \itemize{
#' \item{EL: the lower bound of the symptom onset date of the infector (given as
#' an integer)}
#' \item{ER: the upper bound of the symptom onset date of the infector (given as
#' an integer). Should be such that ER>=EL}
#' \item{SL: the lower bound of the symptom onset date of the infected
#' individual (given as an integer)}
#' \item{SR: the upper bound of the symptom onset date of the infected
#' individual (given as an integer). Should be such that SR>=SL}
#' \item{type (optional): can have entries 0, 1, or 2, corresponding to doubly
#' interval-censored, single interval-censored or exact observations,
#' respectively, see Reich et al. Statist. Med. 2009. If not specified, this
#' will be automatically computed from the dates}
#' }
#' Assuming a given parametric distribution for the serial interval distribution
#' (specified in \code{si_parametric_distr}),
#' the posterior distribution of the serial interval is estimated directly fom
#' these data using MCMC methods implemented in the package
#'
#' @return An object of class \code{estimate_R_mcmc_control} with components
#' burnin, thin, seed, init_pars. This can be
#' used as an argument of function \code{make_config}.
#' @export
#'
#' @examples
#' \dontrun{
#' ## Note the following examples use an MCMC routine
#' ## to estimate the serial interval distribution from data,
#' ## so they may take a few minutes to run
#'
#' ## load data on rotavirus
#' data("MockRotavirus")
#'
#' ## estimate the reproduction number (method "si_from_data")
#' mcmc_seed <- 1
#' burnin <- 1000
#' thin <- 10
#' mcmc_control <- make_mcmc_control(burnin = burnin, thin = thin,
#' seed = mcmc_seed)
#'
#' incid <- MockRotavirus$incidence
#' method <- "si_from_data"
#' overall_seed <- 2
#' config <- make_config(incid = incid,
#' method = method,
#' si_parametric_distr = "G",
#' mcmc_control = mcmc_control,
#' n1 = 500
#' n2 = 50,
#' seed = overall_seed)
#'
#' R_si_from_data <- estimate_R(incid,
#' method = method,
#' si_data = MockRotavirus$si_data,
#' config = config)
#' }
make_mcmc_control <- function(burnin = 3000, thin = 10,
seed = as.integer(Sys.time()),
init_pars = NULL){
mcmc_control <- list(init_pars = init_pars,
burnin = burnin,
thin = thin,
seed = seed )
class(mcmc_control) <- "estimate_R_mcmc_control"
return( mcmc_control )
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.