Nothing
# #########################################################################
# This file is a part of FCNN4R.
#
# Copyright (c) Grzegorz Klima 2015-2016
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
# #########################################################################
.onAttach <- function(...)
{
packageStartupMessage(paste0("Fast Compressed Neural Networks for R ",
utils::packageVersion("FCNN4R"), " (FCNN library ver. ",
.Call("fcnn_ver"), ")\nhttp://fcnn.sourceforge.net/"))
}
#' Fast Compressed Neural Networks for R
#'
#' Provides an interface to kernel routines from the FCNN C++ library.
#' FCNN is based on a completely new Artificial Neural Network
#' representation that offers unmatched efficiency, modularity,
#' and extensibility. FCNN4R provides standard teaching
#' (backpropagation, Rprop, simulated annealing, stochastic gradient)
#' and pruning algorithms (minimum magnitude, Optimal Brain Surgeon),
#' but it is first and foremost an efficient computational engine.
#' Users can easily implement their algorithms by taking advantage
#' of fast gradient computing routines, as well as network
#' reconstruction functionality (removing weights and redundant neurons,
#' reordering inputs, merging networks). Networks can be exported to C functions
#' in order to integrate them into virtually any software solution.
#'
#' @name FCNN4R-package
#'
#' @author Grzegorz Klima <gklima@@users.sourceforge.net>
#'
#' @references
#' G. Klima. \emph{A new approach towards implementing artificial neural networks.}
#' Technical Report, \url{http://fcnn.sourceforge.net/}, 2013.
#'
#' @keywords package
#'
#' @examples
#'
#' # set up the XOR problem inputs and outputs
#' inp <- c(0, 0, 1, 1, 0, 1, 0, 1)
#' dim(inp) <- c(4, 2)
#' outp <- c(0, 1, 1, 0)
#' dim(outp) <- c(4, 1)
#' # create a 2-6-1 network
#' net <- mlp_net(c(2, 6, 1))
#' # set activation function in all layers
#' net <- mlp_set_activation(net, layer = "a", "sigmoid")
#' # randomise weights
#' net <- mlp_rnd_weights(net)
#' # tolerance level
#' tol <- 0.5e-4
#' # teach using Rprop, assign trained network and plot learning history
#' netmse <- mlp_teach_rprop(net, inp, outp, tol_level = tol,
#' max_epochs = 500, report_freq = 10)
#' net <- netmse$net
#' plot(netmse$mse, type = 'l')
#' # plot network with weights
#' mlp_plot(net, TRUE)
#' # if the algorithm had converged, prune using Optimal Brain Surgeon and plot
#' if (mlp_mse(net, inp, outp) <= tol) {
#' net <- mlp_prune_obs(net, inp, outp, tol_level = tol,
#' max_reteach_epochs = 500, report = TRUE)[[1]]
#' mlp_plot(net, TRUE)
#' }
#' # check network output
#' round(mlp_eval(net, inp), digits = 3)
#'
#' @useDynLib FCNN4R
#'
#' @import methods
#' @import Rcpp
#' @importFrom stats runif rnorm
#' @importFrom graphics plot.new plot.window segments text points
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.