Nothing
#' Log-likelihood function
#'
#' @param x a design matrix which is a product of inner product of basis functions and basis coefficients of functional covariate \code{X}
#' @param y a response variable of class \code{factor}
#' @param beta initial values for beta regression coefficients and intercepts
#'
#' @return \item{ll}{ a value of the log-likelihood function at the estimated optimum}
#' @export
#'
loglik = function(x,y,beta){ # score function
#beta = start
n = nrow(x)
wt = rep(1, n) #weights
xc = ncol(x)
ind_xc = seq_len(xc)
lylev = length(levels(y))
q = lylev-1L
ind_q = seq_len(q)
inv_link = function(x) 1/(1+exp(-x)) # logit link function
alphas <- c(-1e2, beta[xc + ind_q], 1e2)
eta = x %*% beta[ind_xc] # linear predictor
z1 = alphas[y+1L] - eta
z2 = alphas[y] - eta
fitted <- inv_link(z1) - inv_link(z2)
if(all(fitted > 0)) ll = -sum(wt*log(fitted)) else ll = Inf # to ensure that thresholds are increasing
return(ll)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.