R/Aggregation.R

Defines functions aggregateCovariates

Documented in aggregateCovariates

# Copyright 2024 Observational Health Data Sciences and Informatics
#
# This file is part of FeatureExtraction
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


#' Aggregate covariate data
#'
#' @param covariateData   An object of type \code{covariateData} as generated using
#'                        \code{getDbCovariateData}.
#'
#' @return
#' An object of class \code{covariateData}.
#'
#' @examples
#' \donttest{
#' covariateData <- FeatureExtraction::createEmptyCovariateData(
#'   cohortIds = 1,
#'   aggregated = FALSE,
#'   temporal = FALSE
#' )
#' aggregatedCovariateData <- aggregateCovariates(covariateData)
#' }
#'
#' @export
aggregateCovariates <- function(covariateData) {
  if (!isCovariateData(covariateData)) {
    stop("Data not of class CovariateData")
  }
  if (!Andromeda::isValidAndromeda(covariateData)) {
    stop("CovariateData object is closed")
  }
  if (isAggregatedCovariateData(covariateData)) {
    stop("Data appears to already be aggregated")
  }
  if (isTemporalCovariateData(covariateData)) {
    stop("Aggregation for temporal covariates is not yet implemented")
  }
  start <- Sys.time()
  result <- Andromeda::andromeda(
    covariateRef = covariateData$covariateRef,
    analysisRef = covariateData$analysisRef
  )
  attr(result, "metaData") <- attr(covariateData, "metaData")
  class(result) <- "CovariateData"
  attr(class(result), "package") <- "FeatureExtraction"
  populationSize <- attr(covariateData, "metaData")$populationSize

  # Aggregate binary variables
  result$covariates <- covariateData$analysisRef %>%
    filter(local(rlang::sym("isBinary")) == "Y") %>%
    inner_join(covariateData$covariateRef, by = "analysisId") %>%
    inner_join(covariateData$covariates, by = "covariateId") %>%
    group_by(local(rlang::sym("covariateId"))) %>%
    summarize(
      sumValue = sum(local(rlang::sym("covariateValue")), na.rm = TRUE),
      averageValue = sum(local(rlang::sym("covariateValue")) / populationSize, na.rm = TRUE)
    )

  # Aggregate continuous variables where missing means zero
  computeStats <- function(data) {
    zeroFraction <- 1 - (nrow(data) / populationSize)
    allProbs <- c(0, 0.1, 0.25, 0.5, 0.75, 0.9, 1)
    probs <- allProbs[allProbs >= zeroFraction]
    probs <- (probs - zeroFraction) / (1 - zeroFraction)
    quants <- quantile(data$covariateValue, probs = probs, type = 1)
    quants <- c(rep(0, length(allProbs) - length(quants)), quants)
    result <- tibble(
      covariateId = data$covariateId[1],
      countValue = nrow(data),
      minValue = quants[1],
      maxValue = quants[7],
      averageValue = mean(data$covariateValue) * (1 - zeroFraction),
      standardDeviation = sqrt((populationSize * sum(data$covariateValue^2) - sum(data$covariateValue)^2) / (populationSize * (populationSize - 1))),
      medianValue = quants[4],
      p10Value = quants[2],
      p25Value = quants[3],
      p75Value = quants[5],
      p90Value = quants[6]
    )
  }

  covariatesContinuous1 <- covariateData$analysisRef %>%
    filter(local(rlang::sym("isBinary")) == "N" & local(rlang::sym("missingMeansZero")) == "Y") %>%
    inner_join(covariateData$covariateRef, by = "analysisId") %>%
    inner_join(covariateData$covariates, by = "covariateId") %>%
    Andromeda::groupApply("covariateId", computeStats) %>%
    bind_rows()

  # Aggregate continuous variables where missing means missing
  computeStats <- function(data) {
    probs <- c(0, 0.1, 0.25, 0.5, 0.75, 0.9, 1)
    quants <- quantile(data$covariateValue, probs = probs, type = 1)
    result <- tibble(
      covariateId = data$covariateId[1],
      countValue = length(data$covariateValue),
      minValue = quants[1],
      maxValue = quants[7],
      averageValue = mean(data$covariateValue),
      standardDeviation = sd(data$covariateValue),
      medianValue = quants[4],
      p10Value = quants[2],
      p25Value = quants[3],
      p75Value = quants[5],
      p90Value = quants[6]
    )
  }

  covariatesContinuous2 <- covariateData$analysisRef %>%
    filter(local(rlang::sym("isBinary")) == "N" & local(rlang::sym("missingMeansZero")) == "N") %>%
    inner_join(covariateData$covariateRef, by = "analysisId") %>%
    inner_join(covariateData$covariates, by = "covariateId") %>%
    Andromeda::groupApply("covariateId", computeStats) %>%
    bind_rows()

  covariatesContinuous <- bind_rows(covariatesContinuous1, covariatesContinuous2)
  if (nrow(covariatesContinuous) > 0) {
    result$covariatesContinuous <- covariatesContinuous
  }
  delta <- Sys.time() - start
  writeLines(paste("Aggregating covariates took", signif(delta, 3), attr(delta, "units")))
  return(result)
}

Try the FeatureExtraction package in your browser

Any scripts or data that you put into this service are public.

FeatureExtraction documentation built on Oct. 18, 2024, 9:06 a.m.