Nothing
library(testthat)
library(Andromeda)
runSpotChecks <- function(connection, cdmDatabaseSchema, ohdsiDatabaseSchema, cohortTable) {
settings <- createCovariateSettings(
useDemographicsGender = TRUE,
useDemographicsAge = TRUE,
useConditionOccurrenceLongTerm = TRUE,
useDrugEraShortTerm = TRUE,
useVisitConceptCountLongTerm = TRUE,
longTermStartDays = -365,
mediumTermStartDays = -180,
shortTermStartDays = -30,
endDays = 0,
includedCovariateConceptIds = c(),
addDescendantsToInclude = FALSE,
excludedCovariateConceptIds = c(21603933),
addDescendantsToExclude = TRUE,
includedCovariateIds = c()
)
suppressWarnings(covariateData <- getDbCovariateData(
connection = connection,
cdmDatabaseSchema = cdmDatabaseSchema,
tempEmulationSchema = ohdsiDatabaseSchema,
cohortDatabaseSchema = ohdsiDatabaseSchema,
cohortTable = cohortTable,
cohortTableIsTemp = TRUE,
cohortIds = c(1124300),
rowIdField = "subject_id",
covariateSettings = settings
))
suppressWarnings(covariateDataAgg <- getDbCovariateData(
connection = connection,
cdmDatabaseSchema = cdmDatabaseSchema,
tempEmulationSchema = ohdsiDatabaseSchema,
cohortDatabaseSchema = ohdsiDatabaseSchema,
cohortTable = cohortTable,
cohortTableIsTemp = TRUE,
cohortIds = c(1124300),
rowIdField = "subject_id",
covariateSettings = settings,
aggregated = TRUE
))
if (covariateData$covariates %>% count() %>% pull() == 0) {
return(TRUE)
}
# Test analysis 1: gender
sql <- "SELECT subject_id, gender_concept_id FROM @cohortTable INNER JOIN @cdmDatabaseSchema.person ON subject_id = person_id WHERE cohort_definition_id = 1124300"
sql <- SqlRender::render(sql,
cdmDatabaseSchema = cdmDatabaseSchema,
cohortTable = cohortTable
)
sql <- SqlRender::translate(sql, targetDialect = attr(connection, "dbms"))
results <- as_tibble(DatabaseConnector::querySql(connection, sql))
colnames(results) <- c("rowId", "covariateId")
results$covariateId <- results$covariateId * 1000 + 1
results$covariateValue <- 1
results <- results[order(results$rowId), ]
covariateIds <- covariateData$covariateRef %>%
filter(.data$analysisId == 1) %>%
select("covariateId")
results2 <- covariateData$covariates %>%
inner_join(covariateIds, by = "covariateId") %>%
arrange(local(rlang::sym("rowId"))) %>%
collect()
expect_equivalent(results, results2)
# Test analysis 2: age
sql <- "SELECT subject_id, YEAR(cohort_start_date) - year_of_birth AS age FROM @cohortTable INNER JOIN @cdmDatabaseSchema.person ON subject_id = person_id WHERE cohort_definition_id = 1124300"
sql <- SqlRender::render(sql,
cdmDatabaseSchema = cdmDatabaseSchema,
cohortTable = cohortTable
)
sql <- SqlRender::translate(sql, targetDialect = attr(connection, "dbms"))
results <- as_tibble(DatabaseConnector::querySql(connection, sql))
colnames(results) <- c("rowId", "covariateValue")
results$covariateId <- 1000 + 2
results <- results[, c("rowId", "covariateId", "covariateValue")]
results <- results[order(results$rowId), ]
covariateIds <- covariateData$covariateRef %>%
filter(.data$analysisId == 2) %>%
select("covariateId")
results2 <- covariateData$covariates %>%
inner_join(covariateIds, by = "covariateId") %>%
arrange(local(rlang::sym("rowId"))) %>%
collect()
expect_equivalent(results, results2)
# Test analysis 102: condition occurrence long term
sql <- "SELECT DISTINCT subject_id, condition_concept_id FROM @cohortTable INNER JOIN @cdmDatabaseSchema.condition_occurrence ON subject_id = person_id WHERE cohort_definition_id = 1124300 AND condition_concept_id != 0 AND condition_start_date <= cohort_start_date AND condition_start_date >= DATEADD(DAY, -365, cohort_start_date)"
sql <- SqlRender::render(sql,
cdmDatabaseSchema = cdmDatabaseSchema,
cohortTable = cohortTable
)
sql <- SqlRender::translate(sql, targetDialect = attr(connection, "dbms"))
results <- DatabaseConnector::querySql(connection, sql)
colnames(results) <- c("rowId", "covariateId")
results$covariateId <- results$covariateId * 1000 + 102
results$covariateValue <- 1
results <- results[order(results$rowId, results$covariateId), ]
row.names(results) <- NULL
covariateIds <- covariateData$covariateRef %>%
filter(.data$analysisId == 102) %>%
select("covariateId")
results2 <- covariateData$covariates %>%
inner_join(covariateIds, by = "covariateId") %>%
arrange(local(rlang::sym("rowId")), local(rlang::sym("covariateId"))) %>%
collect()
expect_equivalent(results, results2)
# Test analysis 404: drug era short term (excluding NSAIDS)
sql <- "SELECT DISTINCT subject_id, drug_concept_id FROM @cohortTable INNER JOIN @cdmDatabaseSchema.drug_era ON subject_id = person_id WHERE cohort_definition_id = 1124300 AND drug_concept_id != 0 AND drug_era_start_date <= cohort_start_date AND drug_era_end_date >= DATEADD(DAY, -30, cohort_start_date) AND drug_concept_id NOT IN (SELECT descendant_concept_id FROM @cdmDatabaseSchema.concept_ancestor WHERE ancestor_concept_id = 21603933)"
sql <- SqlRender::render(sql,
cdmDatabaseSchema = cdmDatabaseSchema,
cohortTable = cohortTable
)
sql <- SqlRender::translate(sql, targetDialect = attr(connection, "dbms"))
results <- DatabaseConnector::querySql(connection, sql)
colnames(results) <- c("rowId", "covariateId")
results$covariateId <- results$covariateId * 1000 + 404
results$covariateValue <- 1
results <- results[order(results$rowId, results$covariateId), ]
row.names(results) <- NULL
covariateIds <- covariateData$covariateRef %>%
filter(.data$analysisId == 404) %>%
select("covariateId")
results2 <- covariateData$covariates %>%
inner_join(covariateIds, by = "covariateId") %>%
arrange(local(rlang::sym("rowId")), local(rlang::sym("covariateId"))) %>%
collect()
expect_equivalent(results, results2)
# Test analysis 923: visit concept count (long term)
sql <- "SELECT subject_id, visit_concept_id, COUNT(*) AS visit_count FROM @cohortTable INNER JOIN @cdmDatabaseSchema.visit_occurrence ON subject_id = person_id WHERE cohort_definition_id = 1124300 AND visit_start_date <= cohort_start_date AND visit_start_date >= DATEADD(DAY, -365, cohort_start_date) AND visit_concept_id != 0 GROUP BY subject_id, visit_concept_id"
sql <- SqlRender::render(sql,
cdmDatabaseSchema = cdmDatabaseSchema,
cohortTable = cohortTable
)
sql <- SqlRender::translate(sql, targetDialect = attr(connection, "dbms"))
results <- DatabaseConnector::querySql(connection, sql)
colnames(results) <- c("rowId", "covariateId", "covariateValue")
results$covariateId <- results$covariateId * 1000 + 923
results <- results[order(results$rowId, results$covariateId), ]
row.names(results) <- NULL
covariateIds <- covariateData$covariateRef %>%
filter(.data$analysisId == 923) %>%
select("covariateId")
results2 <- covariateData$covariates %>%
inner_join(covariateIds, by = "covariateId") %>%
arrange(local(rlang::sym("rowId")), local(rlang::sym("covariateId"))) %>%
collect()
expect_equivalent(results, results2)
# Aggregated
results$count <- 1
aggCount <- aggregate(count ~ covariateId, results, sum)
aggCount <- aggCount[order(aggCount$covariateId), ]
aggMax <- aggregate(covariateValue ~ covariateId, results, max)
aggMax <- aggMax[order(aggMax$covariateId), ]
covariateIds <- covariateDataAgg$covariateRef %>%
filter(.data$analysisId == 923) %>%
select("covariateId")
results3 <- covariateDataAgg$covariatesContinuous %>%
inner_join(covariateIds, by = "covariateId") %>%
arrange(local(rlang::sym("covariateId"))) %>%
collect()
expect_equal(aggCount$covariateId, results3$covariateId)
expect_equal(aggCount$count, results3$countValue)
expect_equal(aggMax$covariateId, results3$covariateId)
expect_equal(aggMax$covariateValue, results3$maxValue)
}
test_that("Run spot-checks at per-person level on PostgreSQL", {
skip_if_not(dbms == "postgresql")
pgConnection <- createUnitTestData(pgConnectionDetails, pgCdmDatabaseSchema, pgOhdsiDatabaseSchema, cohortTable, cohortAttributeTable, attributeDefinitionTable)
on.exit(dropUnitTestData(pgConnection, pgOhdsiDatabaseSchema, cohortTable, cohortAttributeTable, attributeDefinitionTable))
runSpotChecks(pgConnection, pgCdmDatabaseSchema, pgOhdsiDatabaseSchema, cohortTable)
})
test_that("Run spot-checks at per-person level on SQL Server", {
skip_if_not(dbms == "sql server")
sqlServerConnection <- createUnitTestData(sqlServerConnectionDetails, sqlServerCdmDatabaseSchema, sqlServerOhdsiDatabaseSchema, cohortTable, cohortAttributeTable, attributeDefinitionTable)
on.exit(dropUnitTestData(sqlServerConnection, sqlServerOhdsiDatabaseSchema, cohortTable, cohortAttributeTable, attributeDefinitionTable))
runSpotChecks(sqlServerConnection, sqlServerCdmDatabaseSchema, sqlServerOhdsiDatabaseSchema, cohortTable)
})
test_that("Run spot-checks at per-person level on Oracle", {
skip_if_not(dbms == "oracle")
oracleConnection <- createUnitTestData(oracleConnectionDetails, oracleCdmDatabaseSchema, oracleOhdsiDatabaseSchema, cohortTable, cohortAttributeTable, attributeDefinitionTable)
on.exit(dropUnitTestData(oracleConnection, oracleOhdsiDatabaseSchema, cohortTable, cohortAttributeTable, attributeDefinitionTable))
runSpotChecks(oracleConnection, oracleCdmDatabaseSchema, oracleOhdsiDatabaseSchema, cohortTable)
})
test_that("Run spot-checks at per-person level on Redshift", {
skip_if_not(dbms == "redshift")
redshiftConnection <- createUnitTestData(redshiftConnectionDetails, redshiftCdmDatabaseSchema, redshiftOhdsiDatabaseSchema, cohortTable, cohortAttributeTable, attributeDefinitionTable)
on.exit(dropUnitTestData(redshiftConnection, redshiftOhdsiDatabaseSchema, cohortTable, cohortAttributeTable, attributeDefinitionTable))
runSpotChecks(redshiftConnection, redshiftCdmDatabaseSchema, redshiftOhdsiDatabaseSchema, cohortTable)
})
test_that("Run spot-checks at per-person level on Eunomia", {
skip_if_not(dbms == "sqlite" && exists("eunomiaConnection"))
runSpotChecks(eunomiaConnection, eunomiaCdmDatabaseSchema, eunomiaOhdsiDatabaseSchema, cohortTable)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.