Description Usage Arguments Value Author(s) References See Also Examples
Given a set of pre-ordered p-values and accuracy for the result, return the corresponding critical values using the generalized fixed sequence FDR controlling procedure under independence for true nulls (See Theorem 3.2 and 4.2 in Lynch et al. (2016)). The function also provides an option to make decisions given a pre-specified significant level α.
1 | FSFDR.indept.cv(p, k=1, alpha = 0.05, tol = 1e-6, make.decision = TRUE)
|
p |
numeric vector of p-values (possibly with |
k |
pre-specified number of acceptances allowed in the testing procedure (cannot exceed the length of |
alpha |
significant level used to calculate the critical values to make decisions, the default value is 0.05. |
tol |
desired accuracy. The default value is |
make.decision |
logical; if |
A numeric vector of the critical values (of the same length as p
) if make.decision = FALSE
, or a data frame including original p-values, critical values and decision rules if make.decision = TRUE
.
Yalin Zhu
Lynch, G., Guo, W., Sarkar, S. K., & Finner, H. (2016). The Control of the False Discovery Rate in Fixed Sequence Multiple Testing. arXiv preprint arXiv:1611.03146.
FSFWER.arbidept.cv
for fixed sequence FWER controlling procedures.
1 2 3 4 5 6 7 8 9 | ## generate a pre-ordered pvalue vector for 50 hypotheses, where 80% are true nulls
set.seed(1234); m <- 50; pi0 <- 0.8; m0 <- m*pi0; m1 <- m-m0
mu <- c(4*0.9^(1:m1), rep(0,m0))
Zstat <- rnorm(n = m, mean = mu)
Pval <- 1-pnorm(Zstat)
## conventional fixed sequence procedure
FSFDR.indept.cv(p = Pval, alpha = 0.05)
## generalized fixed sequence procedure allowing stop at 5th acceptance
FSFDR.indept.cv(p = Pval, alpha = 0.05, k=5)
|
raw.p critical.value decision
1 8.357118e-03 0.05000000 reject
2 2.178743e-04 0.09523810 reject
3 3.161225e-05 0.13636364 reject
4 3.902366e-01 0.17391304 accept
5 2.626586e-03 0.16666667 accept
6 4.246444e-03 0.16000000 accept
7 9.037528e-02 0.15384615 accept
8 1.199500e-01 0.14814815 accept
9 1.622556e-01 0.14285714 accept
10 3.068932e-01 0.13793103 accept
11 6.833875e-01 0.13333333 accept
12 8.409540e-01 0.12903226 accept
13 7.812005e-01 0.12500000 accept
14 4.743024e-01 0.12121212 accept
15 1.686550e-01 0.11764706 accept
16 5.439085e-01 0.11428571 accept
17 6.953278e-01 0.11111111 accept
18 8.189038e-01 0.10810811 accept
19 7.987520e-01 0.10526316 accept
20 7.849583e-03 0.10256410 accept
21 4.466664e-01 0.10000000 accept
22 6.881757e-01 0.09756098 accept
23 6.702298e-01 0.09523810 accept
24 3.229055e-01 0.09302326 accept
25 7.560712e-01 0.09090909 accept
26 9.262201e-01 0.08888889 accept
27 2.827283e-01 0.08695652 accept
28 8.470010e-01 0.08510638 accept
29 5.060391e-01 0.08333333 accept
30 8.253502e-01 0.08163265 accept
31 1.351662e-01 0.08000000 accept
32 6.828178e-01 0.07843137 accept
33 7.609743e-01 0.07692308 accept
34 6.919052e-01 0.07547170 accept
35 9.483534e-01 0.07407407 accept
36 8.785198e-01 0.07272727 accept
37 9.853727e-01 0.07142857 accept
38 9.100387e-01 0.07017544 accept
39 6.157333e-01 0.06896552 accept
40 6.793556e-01 0.06779661 accept
41 7.359952e-02 0.06666667 accept
42 8.573847e-01 0.06557377 accept
43 8.038253e-01 0.06451613 accept
44 6.105002e-01 0.06349206 accept
45 8.399713e-01 0.06250000 accept
46 8.336062e-01 0.06153846 accept
47 8.659218e-01 0.06060606 accept
48 8.947125e-01 0.05970149 accept
49 6.998010e-01 0.05882353 accept
50 6.903526e-01 0.05797101 accept
raw.p critical.value decision
1 8.357118e-03 0.01041667 reject
2 2.178743e-04 0.02061856 reject
3 3.161225e-05 0.03061224 reject
4 3.902366e-01 0.04040404 accept
5 2.626586e-03 0.04000000 reject
6 4.246444e-03 0.04950495 reject
7 9.037528e-02 0.05882353 accept
8 1.199500e-01 0.05825243 accept
9 1.622556e-01 0.05769231 accept
10 3.068932e-01 0.05714286 accept
11 6.833875e-01 0.05660377 accept
12 8.409540e-01 0.05607477 accept
13 7.812005e-01 0.05555556 accept
14 4.743024e-01 0.05504587 accept
15 1.686550e-01 0.05454545 accept
16 5.439085e-01 0.05405405 accept
17 6.953278e-01 0.05357143 accept
18 8.189038e-01 0.05309735 accept
19 7.987520e-01 0.05263158 accept
20 7.849583e-03 0.05217391 accept
21 4.466664e-01 0.05172414 accept
22 6.881757e-01 0.05128205 accept
23 6.702298e-01 0.05084746 accept
24 3.229055e-01 0.05042017 accept
25 7.560712e-01 0.05000000 accept
26 9.262201e-01 0.04958678 accept
27 2.827283e-01 0.04918033 accept
28 8.470010e-01 0.04878049 accept
29 5.060391e-01 0.04838710 accept
30 8.253502e-01 0.04800000 accept
31 1.351662e-01 0.04761905 accept
32 6.828178e-01 0.04724409 accept
33 7.609743e-01 0.04687500 accept
34 6.919052e-01 0.04651163 accept
35 9.483534e-01 0.04615385 accept
36 8.785198e-01 0.04580153 accept
37 9.853727e-01 0.04545455 accept
38 9.100387e-01 0.04511278 accept
39 6.157333e-01 0.04477612 accept
40 6.793556e-01 0.04444444 accept
41 7.359952e-02 0.04411765 accept
42 8.573847e-01 0.04379562 accept
43 8.038253e-01 0.04347826 accept
44 6.105002e-01 0.04316547 accept
45 8.399713e-01 0.04285714 accept
46 8.336062e-01 0.04255319 accept
47 8.659218e-01 0.04225352 accept
48 8.947125e-01 0.04195804 accept
49 6.998010e-01 0.04166667 accept
50 6.903526e-01 0.04137931 accept
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.