# ambiguity-methods: Calculate the Ambiguity of a Fuzzy Number In FuzzyNumbers: Tools to Deal with Fuzzy Numbers

## Description

The ambiguity (Delgado et al, 1998) is a measure of nonspecificity of a fuzzy number.

## Usage

 ```1 2``` ```## S4 method for signature 'FuzzyNumber' ambiguity(object, ...) ```

## Arguments

 `object` a fuzzy number `...` additional arguments passed to `alphaInterval`

## Details

The ambiguity is defined as val(A) := int_0^1 α(A_U(α) - A_L(α))dα.

## Value

Returns a single numeric value.

## References

Delgado M., Vila M.A., Voxman W. (1998), On a canonical representation of a fuzzy number, Fuzzy Sets and Systems 93, pp. 125-135.

Other FuzzyNumber-method: `Arithmetic`, `Extract`, `FuzzyNumber-class`, `FuzzyNumber`, `alphaInterval()`, `alphacut()`, `as.FuzzyNumber()`, `as.PiecewiseLinearFuzzyNumber()`, `as.PowerFuzzyNumber()`, `as.TrapezoidalFuzzyNumber()`, `as.character()`, `core()`, `distance()`, `evaluate()`, `expectedInterval()`, `expectedValue()`, `integrateAlpha()`, `piecewiseLinearApproximation()`, `plot()`, `show()`, `supp()`, `trapezoidalApproximation()`, `value()`, `weightedExpectedValue()`, `width()`
Other characteristics: `expectedValue()`, `value()`, `weightedExpectedValue()`, `width()`