# pow-PiecewiseLinearFuzzyNumber-numeric-method: Integer power of fuzzy number In FuzzyNumbers: Tools to Deal with Fuzzy Numbers

## Description

For fuzzy numbers the equality of `X*X == X^2` does not hold.

## Usage

 ```1 2``` ```## S4 method for signature 'PiecewiseLinearFuzzyNumber,numeric' e1 ^ e2 ```

## Arguments

 `e1` a PiecewiseLinearFuzzyNumber `e2` numeric (if it is not integer it will be converted by function as.integer())

## Details

This function calculates integer power of a PiecewiseLinearFuzzyNumber according to the reference below.

## Value

Returns a fuzzy number of the class PiecewiseLinearFuzzyNumber indicating `e1^e2`.

## References

KAUFMANN, A., GUPTA, M. M. (1985) Introduction to Fuzzy Arithmetic. New York : Van Nostrand Reinhold Company. ISBN 044230079.

Other extension_principle: `Arithmetic`, `fapply()`

Other PiecewiseLinearFuzzyNumber-method: `Arithmetic`, `Extract`, `PiecewiseLinearFuzzyNumber-class`, `PiecewiseLinearFuzzyNumber`, `alphaInterval()`, `arctan2()`, `as.PiecewiseLinearFuzzyNumber()`, `as.PowerFuzzyNumber()`, `as.TrapezoidalFuzzyNumber()`, `as.character()`, `expectedInterval()`, `fapply()`, `maximum()`, `minimum()`, `necessityExceedance()`, `necessityStrictExceedance()`, `necessityStrictUndervaluation()`, `necessityUndervaluation()`, `plot()`, `possibilityExceedance()`, `possibilityStrictExceedance()`, `possibilityStrictUndervaluation()`, `possibilityUndervaluation()`

## Examples

 ```1 2 3``` ```x = as.PiecewiseLinearFuzzyNumber(TriangularFuzzyNumber(-2, 1, 9), knot.n = 2) x^2 x^3 ```

### Example output

```Piecewise linear fuzzy number with 2 knot(s),
support=[0,81],
core=[1,1].
Piecewise linear fuzzy number with 2 knot(s),
support=[-8,729],
core=[1,1].
```

FuzzyNumbers documentation built on Nov. 15, 2021, 5:09 p.m.