necessityExceedance: Necessity of exceedance In FuzzyNumbers: Tools to Deal with Fuzzy Numbers

Description

Determines value of necessity of e1>=e2, the result is from range [0,1]. Value 0 indicates no fulfilment of the operator and 1 indicates complete fulfilment.

Usage

 ```1 2 3``` ```## S4 method for signature ## 'PiecewiseLinearFuzzyNumber,PiecewiseLinearFuzzyNumber' necessityExceedance(e1, e2) ```

Arguments

 `e1` a PiecewiseLinearFuzzyNumber `e2` a PiecewiseLinearFuzzyNumber

Value

Returns a value from range [0,1] indicating the necessity of exceedance of e2 by e1.

References

DUBOIS, Didier and PRADE, Henri, 1983, Ranking Fuzzy Numbers in the Setting of Possibility Theory. Information Sciences. 1983. Vol. 30, no. 3, p. 183–224.

Other comparison-operators: `necessityStrictExceedance()`, `necessityStrictUndervaluation()`, `necessityUndervaluation()`, `possibilityExceedance()`, `possibilityStrictExceedance()`, `possibilityStrictUndervaluation()`, `possibilityUndervaluation()`
Other PiecewiseLinearFuzzyNumber-method: `Arithmetic`, `Extract`, `PiecewiseLinearFuzzyNumber-class`, `PiecewiseLinearFuzzyNumber`, `^,PiecewiseLinearFuzzyNumber,numeric-method`, `alphaInterval()`, `arctan2()`, `as.PiecewiseLinearFuzzyNumber()`, `as.PowerFuzzyNumber()`, `as.TrapezoidalFuzzyNumber()`, `as.character()`, `expectedInterval()`, `fapply()`, `maximum()`, `minimum()`, `necessityStrictExceedance()`, `necessityStrictUndervaluation()`, `necessityUndervaluation()`, `plot()`, `possibilityExceedance()`, `possibilityStrictExceedance()`, `possibilityStrictUndervaluation()`, `possibilityUndervaluation()`
 ```1 2 3 4 5``` ```a <- TriangularFuzzyNumber(2, 3, 5) b <- TriangularFuzzyNumber(1.5, 4, 4.8) a <- as.PiecewiseLinearFuzzyNumber(a, knot.n = 9) b <- as.PiecewiseLinearFuzzyNumber(b, knot.n = 9) necessityExceedance(a,b) ```