View source: R/combined_envelope_tests.R
combined_scaled_MAD_envelope_test | R Documentation |
Given a list of curve_set
objects, a combined global scaled (directional quantile
or studentized) MAD envelope test is performed with the test functions saved in the curve set objects.
Details of this combined test can be found in Mrkvicka et al. (2017).
The implementation of this test is provided here for historical reasons:
we recommend now instead the use of global_envelope_test
also for combined tests;
these combined tests are there implemented as described in Myllymäki and Mrkvička (2020).
combined_scaled_MAD_envelope_test(
curve_sets,
type = c("qdir", "st"),
alpha = 0.05,
probs = c(0.025, 0.975),
central = "mean",
...
)
curve_sets |
A |
type |
Either "qdir" for the direction quantile envelope test or "st" for the studentized envelope test. |
alpha |
The significance level. The 100(1-alpha)% global envelope will be calculated under the 'fwer' or 'fdr' control. If a vector of values is provided, the global envelopes are calculated for each value. |
probs |
A two-element vector containing the lower and upper quantiles for the measure 'q' or 'qdir', in that order and on the interval [0, 1]. The default values are 0.025 and 0.975, suggested by Myllymäki et al. (2015, 2017). |
central |
Either "mean" or "median". If the curve sets do not contain the component
|
... |
Additional parameters to be passed to |
Mrkvička, T., Myllymäki, M. and Hahn, U. (2017) Multiple Monte Carlo testing, with applications in spatial point processes. Statistics & Computing 27(5): 1239–1255. DOI: 10.1007/s11222-016-9683-9
Myllymäki, M. and Mrkvička, T. (2020). GET: Global envelopes in R. arXiv:1911.06583 [stat.ME]. https://doi.org/10.48550/arXiv.1911.06583
if(require("spatstat.explore", quietly=TRUE)) {
# As an example test CSR of the saplings point pattern from spatstat by means of
# L, F, G and J functions.
data("saplings")
X <- as.ppp(saplings, W=square(75))
nsim <- 499 # Number of simulations for the tests
# Specify distances for different test functions
n <- 500 # the number of r-values
rmin <- 0; rmax <- 20; rstep <- (rmax-rmin)/n
rminJ <- 0; rmaxJ <- 8; rstepJ <- (rmaxJ-rminJ)/n
r <- seq(0, rmax, by=rstep) # r-distances for Lest
rJ <- seq(0, rmaxJ, by=rstepJ) # r-distances for Fest, Gest, Jest
# Perform simulations of CSR and calculate the L-functions
env_L <- envelope(X, nsim=nsim,
simulate=expression(runifpoint(ex=X)),
fun="Lest", correction="translate",
transform=expression(.-r), # Take the L(r)-r function instead of L(r)
r=r, # Specify the distance vector
savefuns=TRUE, # Save the estimated functions
savepatterns=TRUE) # Save the simulated patterns
# Take the simulations from the returned object
simulations <- attr(env_L, "simpatterns")
# Then calculate the other test functions F, G, J for each simulated pattern
env_F <- envelope(X, nsim=nsim,
simulate=simulations,
fun="Fest", correction="Kaplan", r=rJ,
savefuns=TRUE)
env_G <- envelope(X, nsim=nsim,
simulate=simulations,
fun="Gest", correction="km", r=rJ,
savefuns=TRUE)
env_J <- envelope(X, nsim=nsim,
simulate=simulations,
fun="Jest", correction="none", r=rJ,
savefuns=TRUE)
# Crop the curves to the desired r-interval I
curve_set_L <- crop_curves(env_L, r_min=rmin, r_max=rmax)
curve_set_F <- crop_curves(env_F, r_min=rminJ, r_max=rmaxJ)
curve_set_G <- crop_curves(env_G, r_min=rminJ, r_max=rmaxJ)
curve_set_J <- crop_curves(env_J, r_min=rminJ, r_max=rmaxJ)
# The combined directional quantile envelope test
res <- combined_scaled_MAD_envelope_test(
curve_sets=list(L=curve_set_L, F=curve_set_F,
G=curve_set_G, J=curve_set_J),
type="qdir")
plot(res)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.