Nothing
find_optimalK_geoKNN <- function(geo_coord,
gen_coord,
geo.dM,
w_power,
klim,
do_par,
min_nn_dist,
cl
){
k = min(klim)
all.D <- c()
## parallel computation (if `cpu` > 1)
if(do_par){
doParallel::registerDoParallel(cl)
kindx <- seq(from = min(klim), to = max(klim), by = 1)
parallel::clusterExport(cl = cl,
unclass(lsf.str(envir = asNamespace("GGoutlieR"),
all = T)),
envir = as.environment(asNamespace("GGoutlieR"))
)
# NOTE: abolish progress bar to meet the requirement of CRAN submission
# setup a progress bar for foreach
#pb <- txtProgressBar(max = max(klim), min = min(klim), style = 3)
#progress <- function(n){setTxtProgressBar(pb, n)}
#opts <- list(progress = progress)
#clusterExport(cl, "opts", envir = environment())
#all.D <- foreach(k = kindx, .packages='FastKNN', .combine="c", .options.snow = opts) %dopar% {
all.D <- foreach(k = kindx, .packages='FastKNN', .combine="c") %dopar% {
# find KNN
knn.indx <- find_geo_knn(geo.dM = geo.dM,
k=k,
min_nn_dist=min_nn_dist)
# KNN prediction
pred.q <- pred_q_knn(geo_coord = geo_coord,
gen_coord = gen_coord,
geo.dM = geo.dM,
knn.indx = knn.indx,
w_power = w_power)
# calculate Dg statistic
return(sum(cal_Dg(pred.q = pred.q, gen_coord = gen_coord)))
}
stopCluster(cl)
} else {
## computation with a single cpu
## setup a progress bar
pb <- txtProgressBar(max = max(klim), min = min(klim), style = 3)
while(k <= max(klim)){
# find KNN
knn.indx <- find_geo_knn(geo.dM = geo.dM, k=k, min_nn_dist=min_nn_dist)
# KNN prediction
pred.q <- pred_q_knn(geo_coord = geo_coord, gen_coord = gen_coord, geo.dM = geo.dM, knn.indx, w_power = w_power)
# calculate Dg statistic
Dg <- cal_Dg(pred.q, gen_coord)
all.D <- c(all.D, sum(Dg))
setTxtProgressBar(pb, k)
k=k+1
}
}
return(all.D)
} # find_optimalK_geoKNN
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.