Nothing
#' @name Factors
#' @title Factor modeling: Inference for the number of factors
#' @description \code{Factors()} deals with factor modeling for high-dimensional
#' time series proposed in Lam and Yao (2012):\deqn{{\bf y}_t = {\bf Ax}_t +
#' {\boldsymbol{\epsilon}}_t, } where \eqn{{\bf x}_t} is an \eqn{r \times 1}
#' latent process with (unknown) \eqn{r \leq p}, \eqn{{\bf A}} is a \eqn{p
#' \times r} unknown constant matrix, and \eqn{ {\boldsymbol{\epsilon}}_t \sim
#' \mathrm{WN}({\boldsymbol{\mu}}_{\epsilon}, {\bf \Sigma}_{\epsilon})} is a
#' vector white noise process. The number of factors \eqn{r} and the factor
#' loadings \eqn{{\bf A}} can be estimated in terms of an eigenanalysis for a
#' nonnegative definite matrix, and is therefore applicable when the dimension
#' of \eqn{{\bf y}_t} is on the order of a few thousands. This function aims to
#' estimate the number of factors \eqn{r} and the factor loading matrix
#' \eqn{{\bf A}}.
#'
#' @param Y \eqn{{\bf Y} = \{{\bf y}_1, \dots , {\bf y}_n \}'}, a data matrix
#' with \eqn{n} rows and \eqn{p} columns, where \eqn{n} is the sample size and
#' \eqn{p} is the dimension of \eqn{{\bf y}_t}.
#' @param lag.k Time lag \eqn{k_0} used to calculate the nonnegative definte
#' matrix \eqn{ \widehat{\mathbf{M}}}: \deqn{\widehat{\mathbf{M}}\ =\
#' \sum_{k=1}^{k_0}\widehat{\mathbf{\Sigma}}_y(k)\widehat{\mathbf{\Sigma}}_y(k)',
#' } where \eqn{\widehat{\bf \Sigma}_y(k)} is the sample autocovariance of
#' \eqn{ {\bf y}_t} at lag \eqn{k}.
#' @param twostep Logical. If \code{FALSE} (the default), then standard
#' procedures [See Section 2.2 in Lam and Yao (2012)] for estimating \eqn{r}
#' and \eqn{{\bf A}} will be implemented. If \code{TRUE}, then a two step
#' estimation procedure [See Section 4 in Lam and Yao (2012)] will be
#' implemented for estimating \eqn{r} and \eqn{{\bf A}}.
#' @return An object of class "factors" is a list containing the following
#' components: \item{factor_num}{The estimated number of factors
#' \eqn{\hat{r}}.}
#' \item{loading.mat}{The estimated \eqn{p \times r} factor
#' loading matrix \eqn{\widehat{\bf A}}.}
#' \item{lag.k}{the time lag used in function.}
#' \item{method}{a character string indicating what method was performed.}
#'
#'
#' @references Lam, C. & Yao, Q. (2012). \emph{Factor modelling for
#' high-dimensional time series: Inference for the number of factors}, The
#' Annals of Statistics, Vol. 40, pp. 694--726.
#' @examples
#' ## Generate x_t
#' p <- 400
#' n <- 400
#' r <- 3
#' X <- mat.or.vec(n, r)
#' A <- matrix(runif(p*r, -1, 1), ncol=r)
#' x1 <- arima.sim(model=list(ar=c(0.6)), n=n)
#' x2 <- arima.sim(model=list(ar=c(-0.5)), n=n)
#' x3 <- arima.sim(model=list(ar=c(0.3)), n=n)
#' eps <- matrix(rnorm(n*p), p, n)
#' X <- t(cbind(x1, x2, x3))
#' Y <- A %*% X + eps
#' Y <- t(Y)
#' fac <- Factors(Y,lag.k=2)
#' r_hat <- fac$factor_num
#' loading_Mat <- fac$loading.mat
#' @useDynLib HDTSA
#' @importFrom Rcpp sourceCpp
#' @importFrom Rcpp evalCpp
#' @import Rcpp
#' @export
Factors <- function (Y, lag.k=5, twostep=FALSE)
{
n <- nrow(Y)
p <- ncol(Y)
r <- 0
step <- ifelse(twostep==TRUE,2,1)
Y <- t(Y)
storage.mode(r) <- "integer"
storage.mode(p) <- "integer"
storage.mode(n) <- "integer"
storage.mode(step) <- "integer"
storage.mode(Y) <- "double"
#step1 caculate the M
for(time in c(1:step)){
#two method while estimate M
M <- diag(rep(0,p))
mean_y <- as.matrix(rowMeans(Y))
storage.mode(M) <- "double"
storage.mode(mean_y) <- "double"
for(k in 1:lag.k){
Sigma_y <- sigmak(Y, mean_y, k, n)
M <- M + MatMult(Sigma_y, t(Sigma_y))
}
#step2 Eigendecoposition
t <- eigen(M, symmetric=T)
ev <- t$value
G <- as.matrix(t$vectors)
p1 <- ceiling(p/4)
ratio <- ev[2:(p1+1)] / ev[1:p1]
min_ratio <- min(ratio)
index <- 1:p1
r <- r + index[ratio==min_ratio]
if(time == 1){
final_vector <- G[,c(1:r)]
if(twostep){
Y <- Y - final_vector %*% t(final_vector) %*% Y
}
}
else{
final_vector <- cbind(final_vector, G[, c(1:r)])
}
}
PARAMETER <- twostep
METHOD <- "Inference for the number of factors"
names(r) <- "The estimated number of factors"
names(lag.k) <-"Time lag"
#outlist$call <- match.call(expand.dots = FALSE)
#outlist <- list(factor_num = r, loading.mat = final_vector)
#class(outlist) <- c("factors")
structure(list(factor_num = r, loading.mat = final_vector, lag.k=lag.k,
method = METHOD),
class = "factors")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.