mmc.mean | R Documentation |
Constructs a "mmc.multicomp"
object from the sufficient statistics
for a one-way design. The object must be explicitly plotted.
This is the S-Plus version. See ?aovSufficient for R
multicomp.mean(group, n, ybar, s, alpha=.05, ## S-Plus
ylabel="ylabel", focus.name="focus.factor", plot=FALSE,
lmat, labels=NULL, ...,
df=sum(n) - length(n),
sigmahat=(sum((n-1)*s^2) / df)^.5)
multicomp.mmc.mean(group, n, ybar, s, ylabel, focus.name, ## S-Plus
lmat,
...,
comparisons="mca",
lmat.rows=seq(length=length(ybar)),
ry,
plot=TRUE,
crit.point,
iso.name=TRUE,
estimate.sign=1,
x.offset=0,
order.contrasts=TRUE,
method="tukey",
df=sum(n)-length(n),
sigmahat=(sum((n-1)*s^2)/df)^.5)
group |
character vector of levels |
n |
numeric vector of sample sizes |
ybar |
vector of group means |
s |
vector of group standard deviations |
alpha |
Significance levels of test |
ylabel |
name of response variable |
focus.name |
name of factor |
plot |
logical. Should the |
lmat |
|
labels |
|
method |
method for critical point calculation. This corresponds
to |
df |
scalar, residual degrees of freedom |
sigmahat |
|
... |
other arguments |
comparisons |
argument to S-Plus |
estimate.sign , order.contrasts , lmat.rows |
See |
ry |
See argument |
crit.point |
See argument |
iso.name , x.offset |
See |
multicomp.mmc.mean
returns a "mmc.multicomp" object.
multicomp.mean
returns a "multicomp" object.
The multiple comparisons calculations in R and S-Plus use
completely different functions.
MMC plots in R are constructed by mmc
based on
glht
.
MMC plots in S-Plus are constructed by
multicomp.mmc
based on the S-Plus
multicomp
.
The MMC plot is the same in both systems. The details of getting the
plot differ.
Richard M. Heiberger <rmh@temple.edu>
Heiberger, Richard M. and Holland, Burt (2015). Statistical Analysis and Data Display: An Intermediate Course with Examples in R. Second Edition. Springer-Verlag, New York. https://link.springer.com/book/10.1007/978-1-4939-2122-5
Heiberger, Richard M. and Holland, Burt (2006). "Mean–mean multiple comparison displays for families of linear contrasts." Journal of Computational and Graphical Statistics, 15:937–955.
Hsu, J. and Peruggia, M. (1994). "Graphical representations of Tukey's multiple comparison method." Journal of Computational and Graphical Statistics, 3:143–161.
mmc
## This example is from Hsu and Peruggia
## This is the S-Plus version
## See ?aovSufficient for R
if.R(r={},
s={
data(pulmonary)
pulmonary.aov <- aovSufficient(FVC ~ smoker,
data=pulmonary)
summary(pulmonary.aov)
## multicomp object
pulmonary.mca <-
multicomp.mean(pulmonary$smoker,
pulmonary$n,
pulmonary$FVC,
pulmonary$s,
ylabel="pulmonary",
focus="smoker")
pulmonary.mca
## lexicographic ordering of contrasts, some positive and some negative
plot(pulmonary.mca)
pulm.lmat <- cbind("npnl-mh"=c( 1, 1, 1, 1,-2,-2), ## not.much vs lots
"n-pnl" =c( 3,-1,-1,-1, 0, 0), ## none vs light
"p-nl" =c( 0, 2,-1,-1, 0, 0), ## {} arbitrary 2 df
"n-l" =c( 0, 0, 1,-1, 0, 0), ## {} for 3 types of light
"m-h" =c( 0, 0, 0, 0, 1,-1)) ## moderate vs heavy
dimnames(pulm.lmat)[[1]] <- row.names(pulmonary)
pulm.lmat
## mmc.multicomp object
pulmonary.mmc <-
multicomp.mmc.mean(pulmonary$smoker,
pulmonary$n,
pulmonary$FVC,
pulmonary$s,
ylabel="pulmonary",
focus="smoker",
lmat=pulm.lmat,
plot=FALSE)
old.omd <- par(omd=c(0,.95, 0,1))
## pairwise comparisons
plot(pulmonary.mmc, print.mca=TRUE, print.lmat=FALSE)
## tiebreaker plot, with contrasts ordered to match MMC plot,
## with all contrasts forced positive and with names also reversed,
## and with matched x-scale.
plotMatchMMC(pulmonary.mmc$mca)
## orthogonal contrasts
plot(pulmonary.mmc)
## pairwise and orthogonal contrasts on the same plot
plot(pulmonary.mmc, print.mca=TRUE, print.lmat=TRUE)
par(old.omd)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.