Description Usage Format References See Also Examples
A data frame containing a subset (in years 2002 and 2003) of Kii tremor data used in Wang et al. (2018). The columns are named "year"
, "month"
, "day"
, "hour"
, "lat"
, "lon"
.
We provide some R code in the Examples below for how to convert this dataset into the variables R
and Z
used in the function hmm0norm2d
. This dataset can be obtained directly from the Slow Earthquake Database http://www-solid.eps.s.u-tokyo.ac.jp/~sloweq/.
If you have your own way to convert the data into the variables R
and Z
, then you can go to the function hmm0norm2d
directly.
1 |
A data frame with 1112 rows, each row representing the hour in which tremor events occurred. It contains the following variables:
time of tremor occurrence.
latitude of the tremor event in that hour.
longitude of the tremor event in that hour.
Wang, T., Zhuang, J., Buckby, J., Obara, K. and Tsuruoka, H. (2018) Identifying the recurrence patterns of non-volcanic tremors using a 2D hidden Markov model with extra zeros. Journal of Geophysical Research, doi: 10.1029/2017JB015360. Obara, K., Tanaka, S., Maeda, T., & Matsuzawa, T. (2010) Depth-dependent activity of non-volcanic tremor in southwest Japan, Geophysical Research Letters, 37, L13306. doi: 10.1029/2010GL043679. Maeda, T., & Obara. K. (2009) Spatio-temporal distribution of seismic energy radiation from low-frequency tremor in western Shikoku, Japan, J. Geophys. Res., 114, B00A09, doi: 10.1029/2008JB006043.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 | data(Kii)
year <- Kii$year
month <- Kii$month
day <- Kii$day
hour <- Kii$hour
lat <- Kii$lat
lon <- Kii$lon
## Transform the time into days*100+hour. Can use other transformation.
## The purpose is to make sure that each hour of a day has a unique number.
xd <- NULL
for (i in 1:nrow(Kii))
xd[i] <- julian(as.Date(paste(year[i],month[i],day[i],sep="-")))*100+hour[i]
## Create a unique number for each hour in the years 2002 and 2003
## This is to match with xd above, so that we can create the Z variable
## which is 0 for the hours without any tremor occurrence and
## 1 for the hours with tremor events.
a <- seq( julian(as.Date("2002-01-01")), julian(as.Date("2002-12-31")), 1 )*100
b <- seq( julian(as.Date("2003-01-01")), julian(as.Date("2003-12-31")), 1 )*100
aa <- rep(a,each=24)+rep(0:23,times=length(a))
bb <- rep(b,each=24)+rep(0:23,times=length(b))
## Combine all the tremor events which occurred
## in the same hour to be one tremor cluster.
## Kii has maximum 4 events in the same hour
## so we used the code below.
## One can adjust the code for regions with more
## tremor events in the same hour.
## indt: actual time as in each hour
Time <- c(aa,bb)
lt <- length(Time)
indt <- 1:lt
Tim <- Lat <- Lon <- NULL
j <- 1
while (j <= nrow(Kii)-3){
i <- j
if (xd[i+3]==xd[i] & xd[i+2]==xd[i] & xd[i+1]==xd[i]){
Tim <- append(Tim,xd[i])
Lat <- append(Lat,mean(lat[i:(i+3)]))
Lon <- append(Lon,mean(lon[i:(i+3)]))
j <- i+4
}else{
if (xd[i+2]==xd[i] & xd[i+1]==xd[i]){
Tim <- append(Tim,xd[i])
Lat <- append(Lat,mean(lat[i:(i+2)]))
Lon <- append(Lon,mean(lon[i:(i+2)]))
j <- i+3
}else{
if (xd[i+1]==xd[i]){
Tim <- append(Tim,xd[i])
Lat <- append(Lat,mean(lat[i:(i+1)]))
Lon <- append(Lon,mean(lon[i:(i+1)]))
j <- i+2
}else{
Tim <- append(Tim,xd[i])
Lat <- append(Lat,lat[i])
Lon <- append(Lon,lon[i])
j <- i+1
}
}
}
}
Tim <- append(Tim,xd[(nrow(Kii)-1):nrow(Kii)])
Lat <- append(Lat,lat[(nrow(Kii)-1):nrow(Kii)])
Lon <- append(Lon,lon[(nrow(Kii)-1):nrow(Kii)])
## Create a data frame in which each hour is a point
## Those hours when there was no tremor, we set the
## number of tremors as 0
data1 <- array(0,dim=c(lt,3))
Thour <- NULL
for (i in 1:length(Tim)){
use <- Time==Tim[i]
idtem <- (1:lt)[use]
Thour <- append(Thour,idtem)
data1[idtem,2] <- Lat[i]
data1[idtem,3] <- Lon[i]
}
data1[,1] <- indt ## Every hour is one time point
###########################################################
########### Data for time series analysis #############
###########################################################
lt <- length(indt)
Z <- rep(0,lt)
Z[Thour] <- 1
R <- data1[,2:3]
###########################################################
# Setting up initial values for analysing real-world data
## nk is the number of states for the fitted model
### In this example we use nk=3
###########################################################
LL <- -10^200 ## A very small value to compare with
## the log likelihood from the model
nk = 3
gamma <- array(NA,dim=c(nk,nk))
mu <- array(NA,dim=c(nk,2))
sig <- array(NA,dim=c(2,2,nk))
pie <- array(NA,dim=c(1,nk))
kk <- 1
N <- 2
while(kk<N)
{
temp <- matrix(runif(nk*nk,0,1),ncol=nk)
diag(temp) = diag(temp) + rpois(1,6) * apply(temp, 1, sum)
temp <- temp * matrix(rep(1/apply(temp, 1, sum), ncol(temp)), ncol=ncol(temp), byrow=FALSE)
gamma <- temp
R1min <- min((R[,1])[R[,1]>=1e-6])
R1max <- max((R[,1])[R[,1]>=1e-6])
R2min <- min((R[,2])[R[,2]>=1e-6])
R2max <- max((R[,2])[R[,2]>=1e-6])
temp <- cbind(runif(nk,R1min,R1max),runif(nk,R2min,R2max))
temp <- temp[order(temp[,2]),]
mu <- temp
sdR1 <- sd((R[,1])[R[,1]>=1e-6])
sdR2 <- sd((R[,2])[R[,2]>=1e-6])
for (j in 1:nk){
temp <- matrix(runif(4,0.0001,max(sdR1,sdR2)), ncol=2)
temp[1,2] <- temp[2,1] <- runif(1,-1,1)* sqrt(prod(diag(temp)))
sig[, ,j] <- temp
}
pie <- matrix(sort(c(runif(1, 0, 0.01),runif(nk-1, 0, 1))), nrow = 1, byrow = TRUE )
delta <- c(6,runif(nk-1, 0,1))
delta <- delta/sum(delta)
tryCatch({
temp <- hmm0norm2d(R, Z, pie, gamma, mu, sig, delta)
kk<-kk+1
if( LL <= temp$LL){
HMMest <- temp
LL =HMMest$LL
eval(parse(text=paste('HMM',kk,'est = HMMest',sep="")))
# eval(parse(text=paste('save(HMM',kk,'est, file="HMM',kk,'est.image")',sep='')))
## Uncomment the line above if you would like to save the result into a .image file.
}
}, error=function(e){})
print(kk)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.