Kii: Tremor data in the Kii region in 2002 and 2003 for use in...

Description Usage Format References See Also Examples

Description

A data frame containing a subset (in years 2002 and 2003) of Kii tremor data used in Wang et al. (2018). The columns are named "year", "month", "day", "hour", "lat", "lon".

We provide some R code in the Examples below for how to convert this dataset into the variables R and Z used in the function hmm0norm2d. This dataset can be obtained directly from the Slow Earthquake Database http://www-solid.eps.s.u-tokyo.ac.jp/~sloweq/.

If you have your own way to convert the data into the variables R and Z, then you can go to the function hmm0norm2d directly.

Usage

1

Format

A data frame with 1112 rows, each row representing the hour in which tremor events occurred. It contains the following variables:

year, month, day, hour

time of tremor occurrence.

lat

latitude of the tremor event in that hour.

lon

longitude of the tremor event in that hour.

References

Wang, T., Zhuang, J., Buckby, J., Obara, K. and Tsuruoka, H. (2018) Identifying the recurrence patterns of non-volcanic tremors using a 2D hidden Markov model with extra zeros. Journal of Geophysical Research, doi: 10.1029/2017JB015360. Obara, K., Tanaka, S., Maeda, T., & Matsuzawa, T. (2010) Depth-dependent activity of non-volcanic tremor in southwest Japan, Geophysical Research Letters, 37, L13306. doi: 10.1029/2010GL043679. Maeda, T., & Obara. K. (2009) Spatio-temporal distribution of seismic energy radiation from low-frequency tremor in western Shikoku, Japan, J. Geophys. Res., 114, B00A09, doi: 10.1029/2008JB006043.

See Also

hmm0norm2d

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
data(Kii)
year <- Kii$year
month <- Kii$month
day <- Kii$day
hour <- Kii$hour
lat <- Kii$lat
lon <- Kii$lon

## Transform the time into days*100+hour. Can use other transformation.
## The purpose is to make sure that each hour of a day has a unique number.
xd <- NULL
for (i in 1:nrow(Kii))
  xd[i] <- julian(as.Date(paste(year[i],month[i],day[i],sep="-")))*100+hour[i]

## Create a unique number for each hour in the years 2002 and 2003
## This is to match with xd above, so that we can create the Z variable
## which is 0 for the hours without any tremor occurrence and
## 1 for the hours with tremor events.
a <- seq( julian(as.Date("2002-01-01")), julian(as.Date("2002-12-31")), 1 )*100
b <- seq( julian(as.Date("2003-01-01")), julian(as.Date("2003-12-31")), 1 )*100
aa <- rep(a,each=24)+rep(0:23,times=length(a))
bb <- rep(b,each=24)+rep(0:23,times=length(b))

## Combine all the tremor events which occurred 
## in the same hour to be one tremor cluster.
## Kii has maximum 4 events in the same hour 
## so we used the code below.
## One can adjust the code for regions with more 
## tremor events in the same hour.
## indt: actual time as in each hour
Time <- c(aa,bb)
lt <- length(Time)
indt <- 1:lt

Tim <- Lat <- Lon <- NULL
j <- 1
while (j <= nrow(Kii)-3){
  i <- j
  if (xd[i+3]==xd[i] & xd[i+2]==xd[i] & xd[i+1]==xd[i]){
    Tim <- append(Tim,xd[i])
    Lat <- append(Lat,mean(lat[i:(i+3)]))
    Lon <- append(Lon,mean(lon[i:(i+3)]))
    j <- i+4
  }else{
    if (xd[i+2]==xd[i] & xd[i+1]==xd[i]){
      Tim <- append(Tim,xd[i])
      Lat <- append(Lat,mean(lat[i:(i+2)]))
      Lon <- append(Lon,mean(lon[i:(i+2)]))
      j <- i+3
    }else{
      if (xd[i+1]==xd[i]){
        Tim <- append(Tim,xd[i])
        Lat <- append(Lat,mean(lat[i:(i+1)]))
        Lon <- append(Lon,mean(lon[i:(i+1)]))
        j <- i+2
      }else{
        Tim <- append(Tim,xd[i])
        Lat <- append(Lat,lat[i])
        Lon <- append(Lon,lon[i])
        j <- i+1
      }
    }
  }
}
Tim <- append(Tim,xd[(nrow(Kii)-1):nrow(Kii)])
Lat <- append(Lat,lat[(nrow(Kii)-1):nrow(Kii)])
Lon <- append(Lon,lon[(nrow(Kii)-1):nrow(Kii)])

## Create a data frame in which each hour is a point
## Those hours when there was no tremor, we set the 
## number of tremors as 0

data1 <- array(0,dim=c(lt,3))
Thour <- NULL
for (i in 1:length(Tim)){
  use <- Time==Tim[i]
  idtem <- (1:lt)[use]
  Thour <- append(Thour,idtem)
  data1[idtem,2] <- Lat[i]
  data1[idtem,3] <- Lon[i]
}
data1[,1] <- indt ## Every hour is one time point

###########################################################
###########   Data for time series analysis   #############  
###########################################################
lt <- length(indt)
Z <- rep(0,lt)
Z[Thour] <- 1
R <- data1[,2:3]


###########################################################
# Setting up initial values for analysing real-world data
## nk is the number of states for the fitted model
### In this example we use nk=3
###########################################################

LL <- -10^200 ## A very small value to compare with
## the log likelihood from the model

nk = 3

gamma <- array(NA,dim=c(nk,nk))
mu <- array(NA,dim=c(nk,2))
sig <- array(NA,dim=c(2,2,nk))
pie <- array(NA,dim=c(1,nk))

kk <- 1
N <- 2
while(kk<N)
{
  temp <- matrix(runif(nk*nk,0,1),ncol=nk)
  diag(temp) = diag(temp) + rpois(1,6) * apply(temp, 1, sum)
  temp <- temp * matrix(rep(1/apply(temp, 1, sum), ncol(temp)), ncol=ncol(temp), byrow=FALSE)
  gamma <- temp
  
  R1min <- min((R[,1])[R[,1]>=1e-6])
  R1max <- max((R[,1])[R[,1]>=1e-6])
  R2min <- min((R[,2])[R[,2]>=1e-6])
  R2max <- max((R[,2])[R[,2]>=1e-6])
  temp <- cbind(runif(nk,R1min,R1max),runif(nk,R2min,R2max))
  temp <- temp[order(temp[,2]),]
  mu <- temp
  
  sdR1 <- sd((R[,1])[R[,1]>=1e-6])
  sdR2 <- sd((R[,2])[R[,2]>=1e-6])
  for (j in 1:nk){
    temp <- matrix(runif(4,0.0001,max(sdR1,sdR2)), ncol=2)
    temp[1,2] <- temp[2,1] <- runif(1,-1,1)* sqrt(prod(diag(temp)))
    sig[, ,j] <- temp
  }
  
  pie <- matrix(sort(c(runif(1, 0, 0.01),runif(nk-1, 0, 1))), nrow = 1, byrow = TRUE )
  
  delta <- c(6,runif(nk-1, 0,1)) 
  delta <- delta/sum(delta)
  
  tryCatch({
    temp <- hmm0norm2d(R, Z, pie, gamma, mu, sig, delta)
    kk<-kk+1
    if( LL <= temp$LL){
      HMMest <- temp
      LL =HMMest$LL
      eval(parse(text=paste('HMM',kk,'est = HMMest',sep="")))
#      eval(parse(text=paste('save(HMM',kk,'est, file="HMM',kk,'est.image")',sep='')))
## Uncomment the line above if you would like to save the result into a .image file.
    }
  }, error=function(e){})
  print(kk)
}

HMMextra0s documentation built on Aug. 3, 2021, 9:06 a.m.