Description Usage Arguments Details Value Author(s) References See Also Examples
summary.BImm
si the BImm specific method for the generic function summary
which summarizes objects returned by modelling functions.
1 2 |
object |
a BImm class model. |
... |
for extra arguments. |
summary.BImm
summarizes all the relevant information about the estimation of the parameters in a BImm class model.
The function performs statistical significance hypothesis about the estimated fixed parameters based on the normal distribution of the estimates.
summary.BImm
returns an object of class "summary.BImm
".
fixed.coefficients |
a table with all the relevant information about the significance of the fixed effects of the model. It includes the estimations, the standard errors of the estimations, the test-statistics and the p-values. |
random.coef |
predicted random effects of the regression. |
sigma.table |
a table which inlcudes the estimation and standard errors of the parameters which the variance-covariance matrix of the random effects consists of. |
fitted.values |
the fitted mean values of the probability parameter of the conditional beta-binomial distribution. |
residuals |
residuals of the model. |
deviance |
deviance of the model. |
df |
degrees of freedom of the model. |
nRand |
number of random effects. |
nComp |
number of random components. |
nRandComp |
number of random components in each random effect of the model. |
namesRand |
names of the random components. |
iter |
number of iterations in the estimation method. |
nObs |
number of observations in the data. |
y |
dependent response variable in the model. |
X |
model matrix of the fixed effects. |
Z |
model matrix of the random effects. |
balanced |
if the conditional binomial response variable is balanced it returns "yes", otherwise "no". |
m |
number of trials in each binomial observation. |
conv |
convergence of the methodology. If the algorithm has converged it returns "yes", otherwise "no". |
J. Najera-Zuloaga
D.-J. Lee
I. Arostegui
Breslow N. E. & Calyton D. G. (1993): Approximate Inference in Generalized Linear Mixed Models, Journal of the American Statistical Association, 88, 9-25
McCulloch C. E. & Searle S. R. (2001): Generalized, Linear, and Mixed Models, Jhon Wiley & Sons
Pawitan Y. (2001): In All Likelihood: Statistical Modelling and Inference Using Likelihood, Oxford University Press
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | set.seed(5)
# Fixing parameters for the simulation:
nObs <- 1000
m <- 10
beta <- c(1.5,-1.1)
sigma <- 0.8
# Simulating the covariate:
x <- runif(nObs,-5,5)
# Simulating the random effects:
z <- as.factor(rBI(nObs,5,0.5,2))
u <- rnorm(6,0,sigma)
# Getting the linear predictor and probability parameter.
X <- model.matrix(~x)
Z <- model.matrix(~z-1)
eta <- beta[1]+beta[2]*x+crossprod(t(Z),u)
p <- 1/(1+exp(-eta))
# Simulating the response variable
y <- rBI(nObs,m,p)
# Apply the model
model <- BImm(fixed.formula = y~x,random.formula = ~z,m=m)
sum.model <- summary(model)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.