Description Usage Arguments Details Value Author(s) References See Also Examples
summary.BImm si the BImm specific method for the generic function summary which summarizes objects returned by modelling functions.
1 2 |
object |
a BImm class model. |
... |
for extra arguments. |
summary.BImm summarizes all the relevant information about the estimation of the parameters in a BImm class model.
The function performs statistical significance hypothesis about the estimated fixed parameters based on the normal distribution of the estimates.
summary.BImm returns an object of class "summary.BImm".
fixed.coefficients |
a table with all the relevant information about the significance of the fixed effects of the model. It includes the estimations, the standard errors of the estimations, the test-statistics and the p-values. |
random.coef |
predicted random effects of the regression. |
sigma.table |
a table which inlcudes the estimation and standard errors of the parameters which the variance-covariance matrix of the random effects consists of. |
fitted.values |
the fitted mean values of the probability parameter of the conditional beta-binomial distribution. |
residuals |
residuals of the model. |
deviance |
deviance of the model. |
df |
degrees of freedom of the model. |
nRand |
number of random effects. |
nComp |
number of random components. |
nRandComp |
number of random components in each random effect of the model. |
namesRand |
names of the random components. |
iter |
number of iterations in the estimation method. |
nObs |
number of observations in the data. |
y |
dependent response variable in the model. |
X |
model matrix of the fixed effects. |
Z |
model matrix of the random effects. |
balanced |
if the conditional binomial response variable is balanced it returns "yes", otherwise "no". |
m |
number of trials in each binomial observation. |
conv |
convergence of the methodology. If the algorithm has converged it returns "yes", otherwise "no". |
J. Najera-Zuloaga
D.-J. Lee
I. Arostegui
Breslow N. E. & Calyton D. G. (1993): Approximate Inference in Generalized Linear Mixed Models, Journal of the American Statistical Association, 88, 9-25
McCulloch C. E. & Searle S. R. (2001): Generalized, Linear, and Mixed Models, Jhon Wiley & Sons
Pawitan Y. (2001): In All Likelihood: Statistical Modelling and Inference Using Likelihood, Oxford University Press
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | set.seed(5)
# Fixing parameters for the simulation:
nObs <- 1000
m <- 10
beta <- c(1.5,-1.1)
sigma <- 0.8
# Simulating the covariate:
x <- runif(nObs,-5,5)
# Simulating the random effects:
z <- as.factor(rBI(nObs,5,0.5,2))
u <- rnorm(6,0,sigma)
# Getting the linear predictor and probability parameter.
X <- model.matrix(~x)
Z <- model.matrix(~z-1)
eta <- beta[1]+beta[2]*x+crossprod(t(Z),u)
p <- 1/(1+exp(-eta))
# Simulating the response variable
y <- rBI(nObs,m,p)
# Apply the model
model <- BImm(fixed.formula = y~x,random.formula = ~z,m=m)
sum.model <- summary(model)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.