Nothing
diagSuggestion <- function(hvt.results,
data,
level,
quant.err,
distance_metric="L1_Norm",
error_metric="max",
...){
requireNamespace("reshape2")
requireNamespace("dplyr")
##### Min Inter-Centroid distance plot
# browser()
newdfMapping <- hvt.results[[3]][["summary"]]
x <- newdfMapping %>%
dplyr::filter((n > 0 & Segment.Level == level) | (Segment.Level < level & (Quant.Error < quant.err | n <= 3)))
x <- x[x%>%stats::complete.cases(),]
singleton_count=sum(x$Quant.Error< 0.0001)
num_cells=length(x$Quant.Error)
# x <- hvt.results[[3]][["summary"]]
d <- stats::dist(x,method = "manhattan")
df <- reshape2::melt(as.matrix(d), varnames = c("row", "col"))
df <- df[df$value!=0,]
df$value <- df$value/ncol(x)
df_cent <- df %>% dplyr::group_by(row) %>% dplyr::summarise(min_dist = min(value, na.rm = TRUE))
mean_cent_train=mean(df_cent$min_dist)
##### Min Inter-Point distance plot
# browser()
# x=data
d = stats::dist(data,method = "manhattan")
df <- reshape2::melt(as.matrix(d), varnames = c("row", "col"))
df=df[df$value!=0,]
df$value=df$value/ncol(data)
df_data = df %>% dplyr::group_by(row) %>% dplyr::summarise(min_dist = min(value, na.rm = TRUE))
mean_dist_train=mean(df_data$min_dist)
diag_list=list(
mean_centroid_train = mean_cent_train,
mean_distance_train = mean_dist_train
)
return(diag_list)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.