inst/shiny-server/server/RT_ECDF.R

output$RT_ECDF_MULT <- renderPlotly({
  req(length(DATA_RAW()) > 0)
  render_RT_ECDF_MULT()
})

get_data_RT_ECDF_MULT <- reactive({
  req(input$RTECDF.Aggr.Func || input$RTECDF.Aggr.Dim)
  input$RTECDF.Aggr.Refresh
  dsList <- subset(DATA_RAW(), ID %in% input$RTECDF.Aggr.Algs)
  
  if (!input$RTECDF.Aggr.Func) 
    dsList <- subset(dsList, funcId == input$Overall.Funcid)
  else 
    dsList <- subset(dsList, funcId %in% input$RTECDF.Aggr.FuncIds)
  
  if (!input$RTECDF.Aggr.Dim) 
    dsList <- subset(dsList, DIM == input$Overall.Dim)
  else 
    dsList <- subset(dsList, DIM %in% input$RTECDF.Aggr.DIMS)
  
  if (length(dsList) <= 1) {
    shinyjs::alert("This is an invalid configuration for this plot. \n
                     Please ensure that the dataset contains multiple functions / 
                     dimensions to aggregate over.")
    return(NULL)
  }
  
  isolate({
    targets <- RT_ECDF_MULTI_TABLE()
  })
  generate_data.ECDF(dsList, targets, input$RTECDF.Aggr.Logx)
})

render_RT_ECDF_MULT <- reactive({
  withProgress({
    plot_general_data(get_data_RT_ECDF_MULT(), 'x', 'mean', 'line', 
                      scale.xlog = input$RTECDF.Aggr.Logx, 
                      scale.ylog = input$RTECDF.Aggr.Logy, 
                      x_title = "Function Evaluations",
                      y_title = "Proportion of (run, target, ...) pairs", 
                      show.legend = T)
  },
  message = "Creating plot")
})

output$RTECDF.Aggr.Download <- downloadHandler(
  filename = function() {
    eval(FIG_NAME_RT_ECDF_MULT)
  },
  content = function(file) {
    save_plotly(render_RT_ECDF_MULT(), file)
  },
  contentType = paste0('image/', input$RTECDF.Aggr.Format)
)

RT_ECDF_MULTI_TABLE <- reactiveVal(NULL)
trigger_renderDT <- reactiveVal(NULL)
proxy <- dataTableProxy('RT_GRID_GENERATED')

observe({
  alg <- input$RTECDF.Aggr.Algs
  funcid <- input$Overall.Funcid
  data <- DATA_RAW()
  dim <- input$Overall.Dim
  
  req(length(data) > 0)
  req(alg)
  req(funcid)
  req(dim)
  # req(data$suite != NEVERGRAD)

  dsList <- subset(data, ID %in% alg)
  req(length(dsList) > 0)

  if (!input$RTECDF.Aggr.Func) 
    dsList <- subset(dsList, funcId == input$Overall.Funcid)
  
  if (!input$RTECDF.Aggr.Dim) 
    dsList <- subset(dsList, DIM == input$Overall.Dim)
  
  if (length(dsList) == 0) return(NULL)
  
  targets <- get_ECDF_targets(dsList, input$RTECDF.Aggr.Target_type, input$RTECDF.Aggr.Target_number)
  
  RT_ECDF_MULTI_TABLE(targets) # add values to `RT_ECDF_MULTI_TABLE`
  trigger_renderDT(rnorm(1))
})

output$RTECDF.AUC.Table.Download <- downloadHandler(
  filename = function() {
    eval(AUC_ECDF_aggr_name)
  },
  content = function(file) {
    save_table(auc_grid_table(), file)
  }
)

auc_grid_table <- reactive({
  dt_ecdf <- get_data_RT_ECDF_MULT()
  generate_data.AUC(NULL, NULL, dt_ecdf = dt_ecdf)
})

output$AUC_GRID_GENERATED <- DT::renderDataTable({
  req(length(DATA_RAW()) > 0)
  isolate({auc_grid_table()})
  }, 
  editable = FALSE, 
  rownames = FALSE,
  options = list(
    pageLength = 10, 
    lengthMenu = c(5, 10, 25, -1), 
    scrollX = T, 
    server = T,
    columnDefs = list(
      list(
        className = 'dt-right', targets = "_all"
      )
    )
  ),
  filter = 'top'
)

output$RT_GRID_GENERATED <- DT::renderDataTable({
  req(length(DATA_RAW()) > 0)
  trigger_renderDT()
  isolate({RT_ECDF_MULTI_TABLE()})
  }, 
  editable = TRUE, 
  rownames = FALSE,
  options = list(
    pageLength = 10, 
    lengthMenu = c(5, 10, 25, -1), 
    scrollX = T, 
    server = T,
    columnDefs = list(
      list(
        className = 'dt-right', targets = "_all"
      )
    )
  ),
  filter = 'top'
)

observeEvent(input$RT_GRID_GENERATED_cell_edit, {
  info <- input$RT_GRID_GENERATED_cell_edit
  i <- info$row
  j <- info$col + 1
  v <- info$value
  
  suppressWarnings({
    df <- RT_ECDF_MULTI_TABLE()
    set(df, i, j, coerceValue(v, as.numeric(df[i, ..j])))
    RT_ECDF_MULTI_TABLE(df)
  })
  replaceData(proxy, RT_ECDF_MULTI_TABLE(), 
              resetPaging = FALSE, rownames = FALSE)
})

observeEvent(input$RTECDF.Aggr.Table.Upload, {
  if (!is.null(input$RTECDF.Aggr.Table.Upload)) {
    df <- read.csv2(input$RTECDF.Aggr.Table.Upload$datapath, header = T) %>% 
      as.data.table
    
    if (ncol(df) == ncol(RT_ECDF_MULTI_TABLE())) {
      RT_ECDF_MULTI_TABLE(df)
      replaceData(proxy, RT_ECDF_MULTI_TABLE(), 
                  resetPaging = FALSE, 
                  rownames = FALSE)
    } else {
      RT_ECDF_MULTI_TABLE(df)
      trigger_renderDT(rnorm(1))
    }
  } else
    NULL
})

output$RTECDF.Aggr.Table.Download <- downloadHandler(
  filename = 'Example_ECDF_TARGETS.csv',
  content = function(file) {
    write.csv2(RT_ECDF_MULTI_TABLE(), file, row.names = F)
  },
  contentType = "text/csv"
)

# The ECDF plots for the runtime ----------------

get_data_RT_ECDF_Single <- reactive({
  ftargets <- as.numeric(format_FV(input$RTECDF.Single.Target))
  data <- subset(DATA(), ID %in% input$RTECDF.Single.Algs)
  generate_data.ECDF(data, ftargets, input$RTECDF.Single.Logx)
})

output$RT_ECDF <- renderPlotly({
  req(input$RTECDF.Single.Target)
  plot_general_data(get_data_RT_ECDF_Single(), 'x', 'mean', 'line', 
                    x_title = "Function Evaluations",
                    y_title = "Proportion of runs", scale.xlog = input$RTECDF.Single.Logx, show.legend = T)
  # ftargets <- as.numeric(format_FV(input$RTECDF.Single.Target))
  # data <- subset(DATA(), algId %in% input$RTECDF.Single.Algs)
  # Plot.RT.ECDF_Per_Target(data, ftargets, scale.xlog = input$RTECDF.Single.Logx)
})

output$AUC_GRID_GENERATED_SINGLE <- DT::renderDataTable({
  req(length(DATA_RAW()) > 0)
  generate_data.AUC(NULL, NULL, dt_ecdf = get_data_RT_ECDF_Single())
})

output$AUC_GRID_GENERATED_FUNC <- DT::renderDataTable({
  req(length(DATA_RAW()) > 0)
  input$RTECDF.Aggr.Refresh
  generate_data.AUC(NULL, NULL, dt_ecdf = get_data_RT_ECDF_AGGR())
})


output$RT_GRID <- renderPrint({
  req(input$RTECDF.Multi.Min, input$RTECDF.Multi.Max, input$RTECDF.Multi.Step)

  fstart <- format_FV(input$RTECDF.Multi.Min) %>% as.numeric
  fstop <- format_FV(input$RTECDF.Multi.Max) %>% as.numeric
  fstep <- format_FV(input$RTECDF.Multi.Step) %>% as.numeric

  req(fstart <= fstop, fstep <= fstop - fstart)
  data <- DATA()
  fall <- get_funvals(data)

  cat(seq_FV(fall, fstart, fstop, by = fstep))
})

output$RT_ECDF_AGGR <- renderPlotly({
  render_RT_ECDF_AGGR()
})

output$RTECDF.Multi.Download <- downloadHandler(
  filename = function() {
    eval(FIG_NAME_RT_ECDF_AGGR)
  },
  content = function(file) {
    save_plotly(render_RT_ECDF_AGGR(), file)
  },
  contentType = paste0('image/', input$RTECDF.Multi.Format)
)

get_data_RT_ECDF_AGGR <- reactive({
  req(input$RTECDF.Multi.Min, input$RTECDF.Multi.Max, input$RTECDF.Multi.Step)
  fstart <- format_FV(input$RTECDF.Multi.Min) %>% as.numeric
  fstop <- format_FV(input$RTECDF.Multi.Max) %>% as.numeric
  fstep <- format_FV(input$RTECDF.Multi.Step) %>% as.numeric
  data <- subset(DATA(), ID %in% input$RTECDF.Multi.Algs)
  targets <- seq_FV(get_funvals(data), fstart, fstop, fstep)
  generate_data.ECDF(data, targets, input$RTECDF.Multi.Logx)
})

render_RT_ECDF_AGGR <- reactive({
  withProgress({
  
    plot_general_data(get_data_RT_ECDF_AGGR(), 'x', 'mean', 'line', 
                      x_title = "Function Evaluations",
                      y_title = "Proportion of (run, target) pairs", 
                      scale.xlog = input$RTECDF.Multi.Logx, show.legend = T)
  
  # Plot.RT.ECDF_Single_Func(
  #   data, fstart, fstop, fstep,
  #   scale.xlog = input$RTECDF.Multi.Logx
  # )
  },
  message = "Creating plot")
})

# # evaluation rake of all courses
# output$RT_AUC <- renderPlotly({
#   render_RT_AUC()
# })
# 
# output$RTECDF.AUC.Download <- downloadHandler(
#   filename = function() {
#     eval(FIG_NAME_RT_AUC)
#   },
#   content = function(file) {
#     save_plotly(render_RT_AUC(), file)
#   },
#   contentType = paste0('image/', input$RTECDF.AUC.Format)
# )
# 
# get_data_RT_AUC <- reactive({
#   req(input$RTECDF.AUC.Min, input$RTECDF.AUC.Max, input$RTECDF.AUC.Step)
#   
#   fstart <- format_FV(input$RTECDF.AUC.Min) %>% as.numeric
#   fstop <- format_FV(input$RTECDF.AUC.Max) %>% as.numeric
#   fstep <- format_FV(input$RTECDF.AUC.Step) %>% as.numeric
#   data <- subset(DATA(), algId %in% input$RTECDF.AUC.Algs)
#   targets <- seq_FV(get_funvals(data), fstart, fstop, fstep, length.out = 10)
#   generate_data.AUC(data, targets)
# })
# 
# render_RT_AUC <- reactive({
#   # req(input$RTECDF.AUC.Min, input$RTECDF.AUC.Max, input$RTECDF.AUC.Step)
#   # 
#   # fstart <- format_FV(input$RTECDF.AUC.Min) %>% as.numeric
#   # fstop <- format_FV(input$RTECDF.AUC.Max) %>% as.numeric
#   # fstep <- format_FV(input$RTECDF.AUC.Step) %>% as.numeric
#   # data <- subset(DATA(), algId %in% input$RTECDF.AUC.Algs)
#   # 
#   # Plot.RT.ECDF_AUC(
#   #   data, fstart, fstop, fstep, fval_formatter = format_FV
#   # )
#   plot_general_data(get_data_RT_AUC(), 'x', 'AUC', 'radar')
# })

Try the IOHanalyzer package in your browser

Any scripts or data that you put into this service are public.

IOHanalyzer documentation built on Oct. 21, 2021, 5:06 p.m.