Description Usage Arguments Details Value Author(s) References See Also Examples
Derives a meaningful and reliable individualized treatment regime for future patients based on estimated groupwise contrast function.
1 | maximin(B, c0)
|
B |
An p_1*G matrix containing parameters in the groupwise contast function. Here p_1 is the dimension
of |
c0 |
The common marginal treatment effect shared by all subgroups. It can be computed by |
Denoted by β_g the g-th column of B
. This function computes
\arg\max_{\|(β^T,c)^T\|=1} \min_{g\in\{1,…,G\}} (β_g^T β+c_0 c).
The above optimaization problem can be efficiently computed based on quadratic programming.
A vector of maximin effects.
Chengchun Shi
Shi, C., Song, R., Lu, W., and Fu, B. (2018). Maximin Projection Learning for Optimal Treatment Decision with Heterogeneous Individualized Treatment Effects. Journal of the Royal Statistical Society, Series B, 80: 681-702.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | set.seed(12345)
X <- matrix(rnorm(1600), 800, 2)
A <- rbinom(800, 1, 0.5)
h <- 1+sin(0.5*pi*X[,1]+0.5*pi*X[,2])
tau <- rep(0, 800)
B <- matrix(0, 2, 4)
B[,1] <- c(2,0)
B[,2] <- 2*c(cos(15*pi/180), sin(15*pi/180))
B[,3] <- 2*c(cos(70*pi/180), sin(70*pi/180))
B[,4] <- c(0,2)
for (g in 1:4){
tau[((g-1)*200+1):(g*200)] <- X[((g-1)*200+1):(g*200),]%*%B[,g]
}
## mean and scale of the subgroup covariates are allowed to be different
X[1:200,1] <- X[1:200,1]+1
X[201:400,2] <- 2*X[201:400,2]-1
X[601:800,] <- X[601:800,]/2
Y <- h+A*tau+0.5*rnorm(800)
G <- c(rep(1,200), rep(2,200), rep(3,200), rep(4,200))
result <- MPL(Y~X|A|G)
maximin(result$B, result$c0)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.