Description Usage Arguments Value References Examples
Performs a goodness-of-fit test of a linear model by testing whether the errors are independent of the covariates.
1 | MINTregression(x, y, k, keps, w = FALSE, eps)
|
x |
The n \times p design matrix. |
y |
The response vector of length n. |
k |
The value of k to be used for estimation of the joint entropy H(X,ε). |
keps |
The value of k to be used for estimation of the marginal entropy H(ε). |
w |
The weight vector to be used for estimation of the joint entropy H(X,ε), with the same options as for the |
eps |
A vector of null errors which should have the same distribution as the errors are assumed to have in the linear model. |
The p-value corresponding the independence test carried out.
2017arXiv171106642BIndepTest
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | # Correctly specified linear model
x=runif(100,min=-1.5,max=1.5); y=x+rnorm(100)
plot(lm(y~x),which=1)
MINTregression(x,y,5,10,w=FALSE,rnorm(10000))
# Misspecified mean linear model
x=runif(100,min=-1.5,max=1.5); y=x^3+rnorm(100)
plot(lm(y~x),which=1)
MINTregression(x,y,5,10,w=FALSE,rnorm(10000))
# Heteroscedastic linear model
x=runif(100,min=-1.5,max=1.5); y=x+x*rnorm(100);
plot(lm(y~x),which=1)
MINTregression(x,y,5,10,w=FALSE,rnorm(10000))
# Multivariate misspecified mean linear model
x=matrix(runif(1500,min=-1.5,max=1.5),ncol=3)
y=x[,1]^3+0.3*x[,2]-0.3*x[,3]+rnorm(500)
plot(lm(y~x),which=1)
MINTregression(x,y,30,50,w=TRUE,rnorm(50000))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.