Description Usage Arguments Value References Examples
Performs an independence test without knowledge of either marginal distribution using permutations and using a data-driven choice of k.
1 | MINTauto(x, y, kmax, B1 = 1000, B2 = 1000)
|
x |
The n \times d_{X} data matrix of the X values. |
y |
The response vector of length n \times d_{Y} data matrix of the Y values. |
kmax |
The maximum value of k to be considered for estimation of the joint entropy H(X,Y). |
B1 |
The number of repetitions used when choosing k, set to 1000 by default. |
B2 |
The number of permutations to use for the final test, set at 1000 by default. |
The p-value corresponding the independence test carried out and the value of k used.
2017arXiv171106642BIndepTest
1 2 3 4 5 6 7 8 9 10 11 | # Independent univariate normal data
x=rnorm(1000); y=rnorm(1000);
MINTauto(x,y,kmax=200,B1=100,B2=100)
# Dependent univariate normal data
library(mvtnorm)
data=rmvnorm(1000,sigma=matrix(c(1,0.5,0.5,1),ncol=2))
MINTauto(data[,1],data[,2],kmax=200,B1=100,B2=100)
# Dependent multivariate normal data
Sigma=matrix(c(1,0,0,0,0,1,0,0,0,0,1,0.5,0,0,0.5,1),ncol=4)
data=rmvnorm(1000,sigma=Sigma)
MINTauto(data[,1:3],data[,4],kmax=50,B1=100,B2=100)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.