Description Usage Arguments Value References Examples
Performs an independence test without knowledge of either marginal distribution using permutations.
1 |
x |
The n \times d_X data matrix of X values. |
y |
The n \times d_Y data matrix of Y values. |
k |
The value of k to be used for estimation of the joint entropy H(X,Y). |
w |
The weight vector to used for estimation of the joint entropy H(X,Y), with the same options as for the |
B |
The number of permutations to use, set at 1000 by default. |
The p-value corresponding the independence test carried out.
2017arXiv171106642BIndepTest
1 2 3 4 5 6 7 8 9 10 11 | # Independent univariate normal data
x=rnorm(1000); y=rnorm(1000)
MINTperm(x,y,k=20,B=100)
# Dependent univariate normal data
library(mvtnorm)
data=rmvnorm(1000,sigma=matrix(c(1,0.5,0.5,1),ncol=2))
MINTperm(data[,1],data[,2],k=20,B=100)
# Dependent multivariate normal data
Sigma=matrix(c(1,0,0,0,0,1,0,0,0,0,1,0.5,0,0,0.5,1),ncol=4)
data=rmvnorm(1000,sigma=Sigma)
MINTperm(data[,1:3],data[,4],k=20,w=TRUE,B=100)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.