Description Usage Arguments Value References Examples

Performs an independence test without knowledge of either marginal distribution using permutations.

1 |

`x` |
The |

`y` |
The |

`k` |
The value of |

`w` |
The weight vector to used for estimation of the joint entropy |

`B` |
The number of permutations to use, set at 1000 by default. |

The *p*-value corresponding the independence test carried out.

2017arXiv171106642BIndepTest

1 2 3 4 5 6 7 8 9 10 11 | ```
# Independent univariate normal data
x=rnorm(1000); y=rnorm(1000)
MINTperm(x,y,k=20,B=100)
# Dependent univariate normal data
library(mvtnorm)
data=rmvnorm(1000,sigma=matrix(c(1,0.5,0.5,1),ncol=2))
MINTperm(data[,1],data[,2],k=20,B=100)
# Dependent multivariate normal data
Sigma=matrix(c(1,0,0,0,0,1,0,0,0,0,1,0.5,0,0,0.5,1),ncol=4)
data=rmvnorm(1000,sigma=Sigma)
MINTperm(data[,1:3],data[,4],k=20,w=TRUE,B=100)
``` |

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.