Description Usage Arguments Value References Examples
Performs an independence test without knowledge of either marginal distribution using permutations and averaging over a range of values of k.
1 | MINTav(x, y, K, B = 1000)
|
x |
The n \times d_{X} data matrix of the X values. |
y |
The n \times d_{Y} data matrix of the Y values. |
K |
The vector of values of k to be considered for estimation of the joint entropy H(X,Y). |
B |
The number of permutations to use for the test, set at 1000 by default. |
The p-value corresponding the independence test carried out.
2017arXiv171106642BIndepTest
1 2 3 4 5 6 7 8 9 10 11 | # Independent univariate normal data
x=rnorm(1000); y=rnorm(1000);
MINTav(x,y,K=1:200,B=100)
# Dependent univariate normal data
library(mvtnorm);
data=rmvnorm(1000,sigma=matrix(c(1,0.5,0.5,1),ncol=2))
MINTav(data[,1],data[,2],K=1:200,B=100)
# Dependent multivariate normal data
Sigma=matrix(c(1,0,0,0,0,1,0,0,0,0,1,0.5,0,0,0.5,1),ncol=4);
data=rmvnorm(1000,sigma=Sigma)
MINTav(data[,1:3],data[,4],K=1:50,B=100)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.