Nothing
#' @title Joint model for Bidirectional survival data using \code{FastJM}
#' @description
#' The function fits joint model for survival data with two events. It utilizes the FastJM package for obtaining the model parameter estimates.
#' @param dtlong longitudinal data
#' @param dtsurv survival data with two event status along with event time
#' @param longm longitudinal model e.g. list(serBilir~drug * year,serBilir ~ drug * year)
#' @param survm survival model e.g. list(Surv(years,status2)~drug,Surv(time_2,status_2)~drug+age)
#' @param rd random effect component e.g. list(~year|id,~year|id)
#' @param id ID variable
#' @param timeVar time variable
#' @param samplesize samplesize for bigdata
#' @param BIGdata logical argument TRUE or FALSE
#' @return Estimated model parameters of Joint model with bidirectional survival data
#' @importFrom FastJM jmcs
#' @import jmBIG
#' @export
#' @references
#' Li, Shanpeng, et al. "Efficient Algorithms and Implementation of a Semiparametric Joint Model for Longitudinal and Competing Risk Data: With Applications to Massive Biobank Data." Computational and Mathematical Methods in Medicine 2022 (2022).
#'
#' Bhattacharjee, A., Rajbongshi, B. K., & Vishwakarma, G. K. (2024). jmBIG: enhancing dynamic risk prediction and personalized medicine through joint modeling of longitudinal and survival data in big routinely collected data. BMC Medical Research Methodology, 24(1), 172.
#' @examples
#' library(FastJM)
#' library(JMbayes2)
#' st_pbcid<-function(){
#' new_pbcid<-pbc2.id
#' new_pbcid$time_2<-rexp(n=nrow(pbc2.id),1/10)
#' cen_time<-runif(nrow(pbc2.id),min(new_pbcid$time_2),max(new_pbcid$time_2))
#' status_2<-ifelse(new_pbcid$time_2<cen_time,1,0)
#' new_pbcid$status_2<-status_2
#' new_pbcid$time_2<-ifelse(new_pbcid$time_2<cen_time,new_pbcid$time_2,cen_time)
#' new_pbcid$time_2<-ifelse(new_pbcid$time_2<new_pbcid$years,new_pbcid$years,new_pbcid$time_2)
#' new_pbcid
#' }
#' new_pbc2id<-st_pbcid()
#' pbc2$status_2<-rep(new_pbc2id$status_2,times=data.frame(table(pbc2$id))$Freq)
#' pbc2$time_2<-rep(new_pbc2id$time_2,times=data.frame(table(pbc2$id))$Freq)
#' pbc2_new<-pbc2[pbc2$id%in%c(1:50),]
#' new_pbc2id<-new_pbc2id[new_pbc2id$id%in%c(1:50),]
#' model_jmcs<-jmcsB(dtlong=pbc2_new,dtsurv=new_pbc2id,
#' longm=list(serBilir~drug*year,
#' serBilir~drug*year),
#' survm=list(Surv(years,status2)~drug,
#' Surv(time_2,status_2)~drug+age),
#' rd=list(~1|id,~1|id),
#' id='id',timeVar='year')
#' model_jmcs
#' @author Atanu Bhattacharjee, Bhrigu Kumar Rajbongshi and Gajendra Kumar Vishwakarma
jmcsB<-function(dtlong,dtsurv,longm,survm,rd,id,timeVar,BIGdata=FALSE,samplesize=200){
cl<-match.call()
if(!id%in%names(dtlong) ){
stop("\n Longitudinal data must have column 'id' ")
}
if(!id%in%names(dtsurv) ){
stop("\n Survival data must have column 'id' ")
}
if(!names(dtlong)[names(dtlong)==id]==names(dtsurv)[names(dtsurv)==id]){
stop("\n'dtlong' and 'dtsurv' must have same id.")
}
dtlong<-as.data.frame(dtlong)
dtsurv<-as.data.frame(dtsurv)
if(names(dtlong)[names(dtlong)==id]=='id'){dtlong<-dtlong}else{
dtlong<-dtlong; names(dtlong)[names(dtlong)==id]<-'id'}
if(names(dtsurv)[names(dtsurv)==id]=='id'){dtsurv<-dtsurv}else{
dtsurv<-dtsurv; names(dtsurv)[names(dtsurv)==id]<-'id'}
# Preparing the data
longm1<-longm[[1]];longm2<-longm[[2]]
survm1<-survm[[1]];survm2<-survm[[2]]
rd1<-rd[[1]];rd2<-rd[[2]]
nr<-nrow(dtsurv)
surv_st1<-all.vars(survm1)[[2]];surv_st2<-all.vars(survm2)[[2]]
all_variable<-Reduce(union,list(all.vars(longm1),all.vars(longm2),all.vars(survm1),all.vars(survm2),all.vars(rd1),all.vars(rd2)))
if(anyNA(dtlong[all_variable])){
dtlong<-dtlong[complete.cases(dtlong[all_variable]),]
dtsurv<-dtsurv[dtsurv$id%in%intersect(dtsurv$id,unique(dtlong$id)),]
}
if(is.factor(dtsurv[,surv_st1])){
if(!is.numeric(levels(dtsurv[,surv_st1]))){
stop('Use status variable a numeric with censored=0 and dead=1')
}else{
if(length(levels(dtsurv[,surv_st1]))!=2){
stop('More than 2 possible values for survival status. Use status variable a numeric with censored=0 and dead=1')
}
if(length(levels(dtsurv[,surv_st1]))==2&sum(levels(dtsurv[,surv_st1]))!=1){
stop('More than two possible survival status.Use status variable a numeric with censored=0 and dead=1')
}
}
}
if(is.factor(dtsurv[,surv_st2])){
if(!is.numeric(levels(dtsurv[,surv_st2]))){
stop('Use status variable as numeric with censored=0 and dead=1')
}else{
if(length(levels(dtsurv[,surv_st2]))!=2){
stop('More than 2 possible values for survival status. Use status variable a numeric with censored=0 and dead=1')
}
if(length(levels(dtsurv[,surv_st2]))==2&sum(levels(dtsurv[,surv_st2]))!=1){
stop('Use status variable as numeric with censored=0 and dead=1')
}
}
}
if(is.numeric(dtsurv[,surv_st1])&&length(unique(dtsurv[,surv_st1]))!=2){
stop('More than two possible survival status.')
}
if(BIGdata==FALSE){
model1<-jmcs(long.formula =longm1,ydata = data.frame(dtlong),surv.formula = survm1,
cdata = data.frame(dtsurv),random=rd1)
model2<-jmcs(long.formula =longm2,ydata = data.frame(dtlong),surv.formula = survm2,
cdata = data.frame(dtsurv),random=rd2)
}else{
model1<-jmcsBig(dtlong=dtlong,dtsurv=dtsurv,longm=longm1,survm=survm1,
samplesize=samplesize,rd=rd1,id=id)
model2<-jmcsBig(dtlong=dtlong,dtsurv=dtsurv,longm=longm2,survm=survm2,
rd=rd2,samplesize=samplesize,id=id)
}
result<-list()
result$model1<-model1
result$model1_est<-list(Par_Beta=model1$beta,Par_Gamma=model1$gamma1,Par_nu=model1$nu1,Par_vcov=model1$vcov)
result$model2<-model2
result$model2_est<-list(Par_Beta=model2$beta,Par_Gamma=model2$gamma1,Par_nu=model2$nu1,Par_vcov=model2$vcov)
result$IDvar<-id
result$timeVar<-timeVar
result$BIGdata<-BIGdata
class(result)<-'jmcsB'
#samplesize=samplesize# sample of size 50 from the survival data
#dtsurv1<-split(dtsurv,rep(1:ceiling(nr/samplesize),each=samplesize,length.out=nr))
return(result)
}
utils::globalVariables(c('jmcs','ID','na.omit'))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.