R/jmstB.R

Defines functions jmstB

Documented in jmstB

#' @title Joint model for Bidirectional survival data using \code{rstanarm}
#' @description
#' The function fits joint model for survival data with two events. It utilizes the rstanarm package for obtaining the model parameter estimates.
#' @param dtlong longitudinal data
#' @param dtsurv survival data with two event status along with event time
#' @param longm longitudinal model e.g. list(serBilir~drug * year+(year|id),serBilir ~ drug * year+(year|id))
#' @param survm survival model e.g. list(Surv(years,status2)~drug,Surv(time_2,status_2)~drug+age)
#' @param timeVar time variable
#' @param id ID variable
#' @param nchain number of MCMC chain
#' @param refresh number of refresh sample
#' @param samplesize samplesize for bigdata
#' @param BIGdata logical argument TRUE or FALSE
#' @return Estimated model parameters of Joint model with bidirectional survival data
#' @importFrom rstanarm stan_jm
#' @import jmBIG
#' @export
#' @references
#' Goodrich, B., et al. "rstanarm: Bayesian applied regression modeling via Stan. R package version 2.17. 4." Online< http://mc-stan. org (2018).
#'
#' Bhattacharjee, A., Rajbongshi, B. K., & Vishwakarma, G. K. (2024). jmBIG: enhancing dynamic risk prediction and personalized medicine through joint modeling of longitudinal and survival data in big routinely collected data. BMC Medical Research Methodology, 24(1), 172.
#' @examples
#'  \donttest{
#'  ##
#' library(JMbayes2)
#' library(rstanarm)
#' st_pbcid<-function(){
#'   new_pbcid<-pbc2.id
#'   new_pbcid$time_2<-rexp(n=nrow(pbc2.id),1/10)
#'   cen_time<-runif(nrow(pbc2.id),min(new_pbcid$time_2),max(new_pbcid$time_2))
#'   status_2<-ifelse(new_pbcid$time_2<cen_time,1,0)
#'   new_pbcid$status_2<-status_2
#'   new_pbcid$time_2<-ifelse(new_pbcid$time_2<cen_time,new_pbcid$time_2,cen_time)
#'   new_pbcid$time_2<-ifelse(new_pbcid$time_2<new_pbcid$years,new_pbcid$years,
#'                            new_pbcid$time_2)
#'   new_pbcid
#' }
#' new_pbc2id<-st_pbcid()
#' pbc2$status_2<-rep(new_pbc2id$status_2,times=data.frame(table(pbc2$id))$Freq)
#' pbc2$time_2<-rep(new_pbc2id$time_2,times=data.frame(table(pbc2$id))$Freq)
#' pbc2_new<-pbc2[pbc2$id%in%c(1:50),]
#' new_pbc2id<-new_pbc2id[new_pbc2id$id%in%c(1:50),]
#' model_jmstBdirect<-jmstB(
#'   dtlong=pbc2_new,
#'   dtsurv = new_pbc2id,
#'   longm=list(serBilir~drug*year+(year|id),albumin~drug+year+(year|id)),
#'   survm=list(Surv(years,status2)~drug,Surv(time_2,status_2)~drug),
#'   timeVar="year",
#'   id='id',
#'   refresh=400,
#'   nchain=1)
#' model_jmstBdirect
#' ##
#'  }
#' @author Atanu Bhattacharjee, Bhrigu Kumar Rajbongshi and Gajendra Kumar Vishwakarma
jmstB<-function(dtlong,dtsurv,longm,survm,timeVar,
                id,nchain=1,refresh=1000,BIGdata=FALSE,samplesize=200){

  cl<-match.call()
  if(!id%in%names(dtlong) ){
    stop("\n Longitudinal data must have column 'id' ")
  }
  if(!id%in%names(dtsurv) ){
    stop("\n Survival data must have column 'id' ")
  }
  if(!names(dtlong)[names(dtlong)==id]==names(dtsurv)[names(dtsurv)==id]){
    stop("\n'dtlong' and 'dtsurv' must have same id.")
  }
  if(!timeVar%in%names(dtlong)){
    stop("\n 'timeVar' should be in longitudinal dataset")
  }
  dtlong<-as.data.frame(dtlong)
  dtsurv<-as.data.frame(dtsurv)
  if(names(dtlong)[names(dtlong)==id]=='id'){dtlong<-dtlong}else{
    dtlong<-dtlong; names(dtlong)[names(dtlong)==id]<-'id'}
  if(names(dtsurv)[names(dtsurv)==id]=='id'){dtsurv<-dtsurv}else{
    dtsurv<-dtsurv; names(dtsurv)[names(dtsurv)==id]<-'id'}

  longm1<-longm[[1]];longm2<-longm[[2]]
  survm1<-survm[[1]];survm2<-survm[[2]]
  #rd1<-rd[[1]];rd2<-rd[[2]]
  surv_st1<-all.vars(survm1)[[2]];surv_st2<-all.vars(survm2)[[2]]
  all_variable<-Reduce(union,list(all.vars(longm1),all.vars(longm2),all.vars(survm1),all.vars(survm2)))
  if(anyNA(dtlong[all_variable])){
    dtlong<-dtlong[complete.cases(dtlong[all_variable]),]
    dtsurv<-dtsurv[dtsurv$id%in%intersect(dtsurv$id,unique(dtlong$id)),]
  }
  if(is.factor(dtsurv[,surv_st1])){
    if(!is.numeric(levels(dtsurv[,surv_st1]))){
      stop('Use status variable a numeric with censored=0 and dead=1')
    }else{

      if(length(levels(dtsurv[,surv_st1]))!=2){
        stop('More than 2 possible values for survival status. Use status variable a numeric with censored=0 and dead=1')
      }

      if(length(levels(dtsurv[,surv_st1]))==2&sum(levels(dtsurv[,surv_st1]))!=1){
        stop('More than two possible survival status.Use status variable a numeric with censored=0 and dead=1')
      }
    }
  }

  if(is.factor(dtsurv[,surv_st2])){
    if(!is.numeric(levels(dtsurv[,surv_st2]))){
      stop('Use status variable as numeric with censored=0 and dead=1')
    }else{

      if(length(levels(dtsurv[,surv_st2]))!=2){
        stop('More than 2 possible values for survival status. Use status variable a numeric with censored=0 and dead=1')
      }

      if(length(levels(dtsurv[,surv_st2]))==2&sum(levels(dtsurv[,surv_st2]))!=1){
        stop('Use status variable as numeric with censored=0 and dead=1')
      }
    }
  }

  if(is.numeric(dtsurv[,surv_st1])&&length(unique(dtsurv[,surv_st1]))!=2){
    stop('More than two possible survival status.')
  }

  if(BIGdata==FALSE){
    model1 <- stan_jm(formulaLong =longm1,dataLong = dtlong,formulaEvent = survm1,
                      dataEvent = dtsurv,time_var = timeVar,chains = nchain, refresh = refresh, seed = 12345)

    model2 <- stan_jm(formulaLong =longm2,dataLong = dtlong,formulaEvent = survm2,
                      dataEvent = dtsurv,time_var = timeVar,chains = nchain, refresh = refresh, seed = 12345)
  }else{
    model1<-jmstanBig(dtlong=dtlong,dtsurv =dtsurv,longm=longm1,survm=survm1,
                      samplesize=samplesize,time_var=timeVar,id=id,nchain=nchain,refresh=refresh)
    model2<-jmstanBig(dtlong=dtlong,dtsurv =dtsurv,longm=longm2,survm=survm2,
                      samplesize=samplesize,time_var=timeVar,id=id,nchain=nchain,refresh=refresh)
  }
  result<-list()
  result$model1<-model1
  result$model2<-model2
  result$IDvar<-id
  result$timeVar<-timeVar
  result$BIGdata<-BIGdata
  class(result)<-'jmstB'
  result
}



utils::globalVariables(c('stan_jm','na.omit'))

Try the JMbdirect package in your browser

Any scripts or data that you put into this service are public.

JMbdirect documentation built on April 12, 2025, 1:55 a.m.