Nothing
#' @title Prediction plot from \code{jmcsB()}
#' @param x fitted model object
#' @param y newdata longitudinal
#' @param ... other
#' @note
#' In the example code we use newdata as the data for ID 2 in the PBC2 dataset, it has follow up information till
#' 8.832. Now suppose we want to look at the survival of ID 2 under joint model
#' 1 after time 4 and for joint model 2 after time 9. For that we created the
#' newdata as if the individual is followed till for a time period
#' less than min(4,9).
#' @return Returns prediction plot for the newdata using the model fitted through \code{jmcsB()}
#' @import jmBIG
#' @importFrom FastJM survfitjmcs
#' @importFrom stats median quantile
#' @examples
#' \donttest{
#' library(JMbayes2)
#' library(FastJM)
#' st_pbcid<-function(){
#' new_pbcid<-pbc2.id
#' new_pbcid$time_2<-rexp(n=nrow(pbc2.id),1/10)
#' cen_time<-runif(nrow(pbc2.id),min(new_pbcid$time_2),max(new_pbcid$time_2))
#' status_2<-ifelse(new_pbcid$time_2<cen_time,1,0)
#' new_pbcid$status_2<-status_2
#' new_pbcid$time_2<-ifelse(new_pbcid$time_2<cen_time,new_pbcid$time_2,cen_time)
#' new_pbcid$time_2<-ifelse(new_pbcid$time_2<new_pbcid$years,new_pbcid$years,new_pbcid$time_2)
#' new_pbcid}
#' new_pbc2id<-st_pbcid()
#' pbc2$status_2<-rep(new_pbc2id$status_2,times=data.frame(table(pbc2$id))$Freq)
#' pbc2$time_2<-rep(new_pbc2id$time_2,times=data.frame(table(pbc2$id))$Freq)
#' pbc2_new<-pbc2[pbc2$id%in%c(1:50),]
#' new_pbc2id<-new_pbc2id[new_pbc2id$id%in%c(1:50),]
#' model_jmcs<-jmcsB(dtlong=pbc2_new,dtsurv = new_pbc2id,
#' longm=list(serBilir~drug*year,
#' serBilir~drug*year),
#' survm=list(Surv(years,status2)~drug,
#' Surv(time_2,status_2)~drug+age),
#' rd=list(~1|id,~1|id),
#' id='id',timeVar='year')
#'
#' t0<-4
#' nd<-pbc2[pbc2$id %in% c(2),]
#' nd<-nd[nd$year<t0,]
#' nd$status2<-0
#' nd$years<-t0
#' nd$time_2<-9
#' nd$status_2<-0
#' plot(x=model_jmcs,y=nd)
#' ##
#' }
#' @rdname plot.jmcsB
#' @method plot jmcsB
#' @export
plot.jmcsB<-function(x,y,...){
if(!inherits(x,'jmcsB'))
stop("\n Not a 'jmbBdirect' object.\n")
result<-x
IDvar<-x$IDvar
y<-as.data.frame(y)
ynewdata<-as.data.frame(y)
cnewdata<-as.data.frame(y[!(duplicated(y[IDvar])),])
timeVar<-x$timeVar
idNumber<-as.numeric(cnewdata[,IDvar])
if(result$BIGdata==FALSE){
long1_var<-all.vars(x$model1$LongitudinalSubmodel)[1]
long2_var<-all.vars(x$model2$LongitudinalSubmodel)[1]
surv1_var<-all.vars(x$model1$SurvivalSubmodel)[1]
surv2_var<-all.vars(x$model2$SurvivalSubmodel)[1]
#future_time1<-seq(ynewdata[,timeVar][nrow(ynewdata)],3*ynewdata[,timeVar][nrow(ynewdata)],1)
t_0<-ynewdata[,surv1_var][nrow(ynewdata)]
t_1<-ynewdata[,surv2_var][nrow(ynewdata)]
#use bootstrap sample for 95% Confidence Interval
bootstrap_longitudinal_survival <- function(longitudinal_data, survival_data, n_bootstrap = 10,id,idNumber){
bootstrap_samples <- vector("list", length = n_bootstrap)
unique_ids <- as.numeric(unique(longitudinal_data[[id]]))
for (i in 1:n_bootstrap) {
# Sample IDs with replacement
bootstrap_ids <- sample(unique_ids[unique_ids!=idNumber], replace = TRUE)
n_bootstrap_ids<-seq(1,length(unique(survival_data[[id]])))
bootstrap_longitudinal_sample <- data.frame()
bootstrap_survival_sample <- data.frame()
count<-0
for (j in 1:(length(bootstrap_ids))) {
id_longitudinal_data <- longitudinal_data[longitudinal_data[[id]] == bootstrap_ids[j], ]
id_longitudinal_data[[id]]<-j
id_survival_data <- survival_data[survival_data[[id]] == bootstrap_ids[[j]], ]
id_survival_data[[id]]<-j
bootstrap_longitudinal_sample <- rbind(bootstrap_longitudinal_sample, id_longitudinal_data)
bootstrap_survival_sample <- rbind(bootstrap_survival_sample, id_survival_data)
}
newdatalong<-longitudinal_data[longitudinal_data[id]==idNumber,]
newdatalong[id]<-length(unique(longitudinal_data[[id]]))
bootstrap_longitudinal_sample<-rbind(bootstrap_longitudinal_sample,newdatalong)
newdatasurv<-survival_data[survival_data[id]==idNumber,]
newdatasurv[id]<-length(unique(longitudinal_data[[id]]))
bootstrap_survival_sample<-rbind(bootstrap_survival_sample,newdatasurv)
bootstrap_samples[[i]] <- list(longitudinal = bootstrap_longitudinal_sample, survival = bootstrap_survival_sample)
}
return(bootstrap_samples)
}
bootstrapped_data <- bootstrap_longitudinal_survival(x$model1$ydata,
x$model1$cdata,
n_bootstrap = 30,id=IDvar,
idNumber = idNumber)
if(t_0<=t_1){
future_time1<-seq(t_0,t_1,length.out=20)
future_time2<-seq(t_1,2*t_1,length.out=20)
pred_model1<-survfitjmcs(object=result$model1,seed=100,ynewdata=ynewdata,cnewdata=cnewdata,u=future_time1,method='Laplace',obs.time=timeVar)
pred_model2<-survfitjmcs(object=result$model2,seed=100,ynewdata=ynewdata,cnewdata=cnewdata,u=future_time2,method='Laplace',obs.time=timeVar)
model1_list<-list();model2_list<-list()
pred_model1_list<-list();pred_model2_list<-list();CIdata_model1<-list();
CIdata_model2<-list()
for(i in 1:length(bootstrapped_data)){
model1_list[[i]]<-jmcs(ydata=bootstrapped_data[[i]]$longitudinal,
cdata=bootstrapped_data[[i]]$survival,
long.formula=x$model1$LongitudinalSubmodel,
surv.formula=x$model1$SurvivalSubmodel,
random=x$model1$random)
model2_list[[i]]<-jmcs(ydata=bootstrapped_data[[i]]$longitudinal,
cdata=bootstrapped_data[[i]]$survival,
long.formula=x$model2$LongitudinalSubmodel,
surv.formula=x$model2$SurvivalSubmodel,
random=x$model2$random)
pred_model1_list[[i]]<-survfitjmcs(object=model1_list[[i]],seed=100,ynewdata=ynewdata,cnewdata=cnewdata,u=future_time1,method='Laplace',obs.time=timeVar)
pred_model2_list[[i]]<-survfitjmcs(object=model2_list[[i]],seed=100,ynewdata=ynewdata,cnewdata=cnewdata,u=future_time2,method='Laplace',obs.time=timeVar)
CIdata_model1[[i]]<-pred_model1_list[[i]]$Pred[[1]]$PredSurv
CIdata_model2[[i]]<-pred_model2_list[[i]]$Pred[[1]]$PredSurv
}
}else{
future_time1<-seq(t_1,t_0,length.out=20)
future_time2<-seq(t_0,2*t_0,length.out=20)
pred_model1<-survfitjmcs(object=result$model2,seed=100,ynewdata=ynewdata,cnewdata=cnewdata,u=future_time1,method='Laplace',obs.time=timeVar)
pred_model2<-survfitjmcs(object=result$model1,seed=100,ynewdata=ynewdata,cnewdata=cnewdata,u=future_time2,method='Laplace',obs.time=timeVar)
model1_list<-list();model2_list<-list()
pred_model1_list<-list();pred_model2_list<-list();CIdata_model1<-list()
CIdata_model2<-list()
for(i in 1:length(bootstrapped_data)){
model1_list[[i]]<-jmcs(ydata=bootstrapped_data[[i]]$longitudinal,
cdata=bootstrapped_data[[i]]$survival,
long.formula=x$model2$LongitudinalSubmodel,
surv.formula=x$model2$SurvivalSubmodel,
random=x$model2$random)
model2_list[[i]]<-jmcs(ydata=bootstrapped_data[[i]]$longitudinal,
cdata=bootstrapped_data[[i]]$survival,
long.formula=x$model1$LongitudinalSubmodel,
surv.formula=x$model1$SurvivalSubmodel,
random=x$model1$random)
pred_model1_list[[i]]<-survfitjmcs(object=model2_list[[i]],seed=100,ynewdata=ynewdata,cnewdata=cnewdata,u=future_time1,method='Laplace',obs.time=timeVar)
pred_model2_list[[i]]<-survfitjmcs(object=model1_list[[i]],seed=100,ynewdata=ynewdata,cnewdata=cnewdata,u=future_time2,method='Laplace',obs.time=timeVar)
CIdata_model1[[i]]<-pred_model1_list[[i]]$Pred[[1]]$PredSurv
CIdata_model2[[i]]<-pred_model2_list[[i]]$Pred[[1]]$PredSurv
}
}
CIdata_model1<-Reduce('cbind',CIdata_model1)
CIdata_model2<-Reduce('cbind',CIdata_model2)
y_obs <- data.frame(year = pred_model1$y.obs[[1]][,timeVar],
Marker1 = pred_model1$y.obs[[1]][,long1_var])
pred_surv <- data.frame(times = pred_model1$Pred[[1]]$times,
PredSurv = apply(CIdata_model1,1,function(x){quantile(x,0.5)}),
LL=apply(CIdata_model1,1,function(x){quantile(x,0.025)}),
UL=apply(CIdata_model1,1,function(x){quantile(x,0.975)})
)
y_obs_2<-data.frame(year=pred_model2$y.obs[[1]][,timeVar],
Marker2=pred_model2$y.obs[[1]][,long2_var])
pred_surv2<-data.frame(times = pred_model2$Pred[[1]]$times,
PredSurv =apply(CIdata_model2,1,function(x){quantile(x,0.5)}),
LL=apply(CIdata_model2,1,function(x){quantile(x,0.025)}),
UL=apply(CIdata_model2,1,function(x){quantile(x,0.975)})
)
abline_point1<-min(pred_surv$times)
abline_point2<-max(pred_surv$times)
}else{
long1_var<-all.vars(result$model1$pseudoMod$LongitudinalSubmodel)[1]
long2_var<-all.vars(result$model2$pseudoMod$LongitudinalSubmodel)[1]
surv1_var<-all.vars(result$model1$pseudoMod$SurvivalSubmodel)[1]
surv2_var<-all.vars(result$model2$pseudoMod$SurvivalSubmodel)[1]
future_time1<-seq(ynewdata[,surv1_var][nrow(ynewdata)],ynewdata[,surv2_var][nrow(ynewdata)],length.out=20)
future_time2<-seq(ynewdata[,surv2_var][nrow(ynewdata)],2*ynewdata[,surv2_var][nrow(ynewdata)],length.out=20)
t_0<-ynewdata[,surv1_var][nrow(ynewdata)]
t_1<-ynewdata[,surv2_var][nrow(ynewdata)]
if(t_0<=t_1){
future_time1<-seq(t_0,t_1,length.out=20)
future_time2<-seq(t_1,2*t_1,length.out=20)
pred_model1<-survfitJMCS(model=result$model1,ids=idNumber,method='Laplace',u=future_time1,obs.time = timeVar)
pred_model2<-survfitJMCS(model=result$model2,ids=idNumber,method='Laplace',u=future_time2,obs.time=timeVar)
bootci_model1<-bootciJMCS(pred_model1,future_time = future_time1)
bootci_model2<-bootciJMCS(pred_model2,future_time = future_time2)
}else{
future_time1<-seq(t_1,t_0,length.out=20)
future_time2<-seq(t_0,2*t_0,length.out=20)
pred_model1<-survfitJMCS(model=result$model2,ids=ID,method='Laplace',u=future_time1,obs.time = timeVar)
pred_model2<-survfitJMCS(model=result$model1,ids=ID,method='Laplace',u=future_time2,obs.time=timeVar)
bootci_model1<-bootciJMCS(pred_model1,future_time = future_time1)
bootci_model2<-bootciJMCS(pred_model2,future_time = future_time2)
}
y_obs <- data.frame(year = pred_model1$P1$y.obs[[1]][,timeVar],Marker1 = pred_model1$P1$y.obs[[1]][,long1_var])
pred_surv <- data.frame(times = bootci_model1$bootCI$Times,
PredSurv =bootci_model1$bootCI$Med ,
LL=bootci_model1$bootCI$LL,
UL=bootci_model1$bootCI$UL)
y_obs_2<-data.frame(year=pred_model2$P1$y.obs[[1]][,timeVar],
Marker2=pred_model2$P1$y.obs[[1]][,long2_var])
pred_surv2<-data.frame(times = bootci_model2$bootCI$Times,
PredSurv =bootci_model2$bootCI$Med,
LL=bootci_model2$bootCI$LL,
UL=bootci_model2$bootCI$UL)
}
pred_surv$PredSurv<-ifelse(pred_surv$PredSurv>=1,1,pred_surv$PredSurv)
pred_surv$LL<-ifelse(pred_surv$LL>=1,1,pred_surv$LL)
pred_surv$UL<-ifelse(pred_surv$UL>=1,1,pred_surv$UL)
pred_surv2$PredSurv<-ifelse(pred_surv2$PredSurv>=1,1,pred_surv2$PredSurv)
pred_surv2$LL<-ifelse(pred_surv2$LL>=1,1,pred_surv2$LL)
pred_surv2$UL<-ifelse(pred_surv2$UL>=1,1,pred_surv2$UL)
oldpar <- par(no.readonly = TRUE)
K<-2
m<-cbind(1:K,rep(K+1,K),rep(K+2,K))
xticks<-pretty(c(y_obs$year,y_obs_2$year))
widths<-c(0.3,0.35,0.35)
layout(m,widths=widths)
par(mar=c(0,4.5,0,0),oma=c(4,0,3,0),cex.axis=1.1,font.axis=2,font.lab=2,font.main=2)
plot(x=y_obs$year,y=y_obs$Marker1,type='l',las=1,ylab='',xaxt='n',lwd=1.5)
points(x=y_obs$year,y=y_obs$Marker1,pch=8,col='red')
mtext(long1_var,line=2.5,side=2,font=2)
box(lwd=1.3)
par(mar = c(0, 4.5, 0, 0))
plot(x=y_obs_2$year,y=y_obs_2$Marker2,type='l',las=1,ylab='',xaxt='n',lwd=1.5)
points(x=y_obs_2$year,y=y_obs_2$Marker2,pch=8,col='red')
mtext(long2_var,line=2.5,side=2,font=2)
axis(1, at = xticks)
box(lwd=1.3)
par(mar=c(0,0,0,0))
xticks<-pretty(c(pred_surv$times))
plot(x=pred_surv$times,y=pred_surv$PredSurv,col='black',type='l',las=1,yaxt='n',xaxs='i',xaxt='n',ylab='',ylim=c(0,1))
polygon(c(pred_surv$times,rev(pred_surv$times)),c(pred_surv$UL,rev(pred_surv$LL)),col=rgb(0,0,0.6,0.4),border=NA)
lines(x=pred_surv$times,y=pred_surv$PredSurv,col='blue',lwd=2)
text(x=median(pred_surv$times),y=0.99,labels = ifelse(t_0<=t_1,"Event 1","Event 2"), pos = 3, col = "black", cex = 1.6,font=2)
axis(1, at = xticks)
box(lwd=1.3)
par(mar=c(0,0,0,4.5))
xticks<-pretty(c(pred_surv2$times))
plot(x=pred_surv2$times,y=pred_surv2$PredSurv,col='black',type='l',las=1,yaxt='n',xaxt='n',xaxs='i',ylab='',ylim=c(0,1))
polygon(c(pred_surv2$times,rev(pred_surv2$times)),c(pred_surv2$UL,rev(pred_surv2$LL)),col=rgb(0.6,0,0.6,0.4),border = NA)
lines(x=pred_surv2$times,y=pred_surv2$PredSurv,col='red',lwd=2)
text(x=median(pred_surv2$times),y=0.99,labels = ifelse(t_0<=t_1,"Event 2","Event 1"), pos = 3, col = "black", cex = 1.6,font=2)
axis(1, at = xticks)
axis(4,las=1)
mtext('Plot for Bidirectional survival data', 3,
line = 1, outer = TRUE, font = 2, cex = 1.3)
mtext("Time", 1,
line = 2.5, outer = TRUE,font=2)
mtext("Survival Prediction", 4,
line = 2.5,font=2)
box(lwd=1.3)
on.exit(par(oldpar))
}
utils::globalVariables(c('survfitjmcs','year','serBilir','geom_point','times','PredSurv','geom_vline','labs','scale_y_continuous','sec_axis','scale_color_manual','theme','element_text','element_rect'))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.