Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----include=FALSE------------------------------------------------------------
library(LSTbook)
library(tibble)
## -----------------------------------------------------------------------------
Example1 <- datasim_make(
x <- rnorm(n, mean = 0, sd = 2),
y <- -3 + 10 * x + rnorm(n, mean = 0, sd = 5)
)
Example1 |> take_sample(n=6, seed = 101)
## ----error = TRUE-------------------------------------------------------------
Wrong_way <- datasim_make(x = rnorm(n, mean=0, sd=2)) # don't use =
## -----------------------------------------------------------------------------
Example1 |> take_sample(n = 3)
Example1 |> take_sample(n = 2)
# and so on
## -----------------------------------------------------------------------------
print(sim_04) # One of the simulations in {LST}
## ----label='DAGsMFIYTT'-------------------------------------------------------
dag_draw(sim_04)
## ----error = TRUE-------------------------------------------------------------
cycle <- datasim_make(x <- y, y <- -x)
## ----label='DAGswTgvGw'-------------------------------------------------------
print(sim_vaccine)
dag_draw(sim_vaccine)
## -----------------------------------------------------------------------------
sim_data <- sim_vaccine |> take_sample(n = 10000)
## -----------------------------------------------------------------------------
sim_data |> model_train(flu ~ vaccinated) |> conf_interval()
## -----------------------------------------------------------------------------
sim_data |> model_train(zero_one(died, one="yes") ~ flu) |> conf_interval()
## ----label='DAGsJsATe2'-------------------------------------------------------
print(sim_vaccine, report_hidden = TRUE)
dag_draw(sim_vaccine, report_hidden = TRUE)
## -----------------------------------------------------------------------------
Randomized_trial_sim <- datasim_intervene(sim_vaccine, .v <- c(-5, 5))
dag_draw(Randomized_trial_sim, report_hidden = TRUE)
## -----------------------------------------------------------------------------
RTdata <- Randomized_trial_sim |> take_sample(n=10000, report_hidden = TRUE)
RTdata |> model_train(.f ~ .v + .h) |> conf_interval()
## -----------------------------------------------------------------------------
n <- 100
x <- rnorm(n, mean = 0, sd = 2)
y <- -3 + 10 * x + rnorm(n, mean = 0, sd = 5)
## -----------------------------------------------------------------------------
n <- 10
color <- categorical(n, "red", "blue", "green")
color
## -----------------------------------------------------------------------------
color <- categorical(n, red = .1, blue = .2, green = .7)
color
## -----------------------------------------------------------------------------
flip <- bernoulli(n)
flip
## -----------------------------------------------------------------------------
flip <- bernoulli(n, labels = c("bad", "good"))
flip
## -----------------------------------------------------------------------------
vals <- cat2value(flip, good = 2, bad = -1 )
vals
result <- bernoulli(logodds = vals, labels = c("fail", "succeed"))
result
## -----------------------------------------------------------------------------
result <- bernoulli(logodds = cat2value(flip, good=2, bad = -1))
result
## -----------------------------------------------------------------------------
treatment <- block_by(color, levels = c("glue", "nails", "screws"))
treatment
## -----------------------------------------------------------------------------
all_together <- datasim_make(
color <- categorical(n, red = .1, blue = .2, green = .7),
flip <- bernoulli(n, labels = c("bad", "good")),
result <- bernoulli(logodds = cat2value(flip, good=2, bad = -1)),
treatment <- block_by(color, levels = c("glue", "nails", "screws"))
)
all_together |> take_sample(n = 20) |> arrange(color)
## -----------------------------------------------------------------------------
Mix_them <- datasim_make(
x <- rnorm(n),
y <- mix_with(x, R2 = 0.71, var = 4.35)
)
Dat <- Mix_them |> take_sample(n = 100)
Dat |> model_train(y ~ x) |> R2()
Dat |> summarize(var(y))
## -----------------------------------------------------------------------------
Sick_sim <- datasim_make(
health <- rnorm(n, sd=2),
sick <- bernoulli(logodds = health, labels = c("ill", "OK"))
)
Sim_dat <- Sick_sim |> take_sample(n = 1000)
Sim_dat |> point_plot(sick ~ health)
## -----------------------------------------------------------------------------
# This won't work!
sum_sim <- datasim_make(
k <- take_sample(c(1, 4, 16, 32, 64, 128), n = n, replace = TRUE),
y <- sum(rnorm(k))
)
sum_sim |> take_sample(n = 5)
## -----------------------------------------------------------------------------
# This will do what we want!
sum_sim <- datasim_make(
k <- take_sample(c(1, 4, 16, 32, 64, 128), n = n, replace = TRUE),
y <- each(sum(rnorm(k)))
)
sum_sim |> take_sample(n = 5)
## -----------------------------------------------------------------------------
sum_sim |> take_sample(n = 10000) |>
point_plot(y ~ k, point_ink = 0.1)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.