Nothing
#' @name LambertW-toolkit
#' @title Do-it-yourself toolkit for Lambert W\eqn{ \times} F distribution
#' @description
#'
#' \strong{IMPORTANT:} This toolkit functionality is still under active
#' development; function names, arguments, return values, etc. may change.
#'
#' This do-it-yourself Lambert W\eqn{ \times} F toolkit implements the flexible
#' input/output framework of Lambert W \eqn{\times} F random variables (see
#' References). Using a modular approach, it allows users to create their
#' own Lambert W \eqn{\times} 'MyFavoriteDistribution' RVs. See Details
#' below.
#'
#' If the distribution you inted to use is not already implemented
#' (\code{\link{get_distnames}}), then you can create it:
#' \describe{
#' \item{create input:}{use \code{\link{create_LambertW_input}} with your
#' favorite distribution,}
#' \item{create output:}{pass it as an input argument to \code{\link{create_LambertW_output}},}
#' \item{use output:}{use Rs standard functionality for distributions
#' such as random number generation (\code{rY}), pdf (\code{dY}) and cdf
#' (\code{pY}), quantile function (\code{qY}), etc. for this newly generated
#' Lambert W \eqn{\times} 'MyFavoriteDistribution'.}
#' }
#'
#' @details
#' \code{\link{create_LambertW_output}} takes an object of class
#' \code{LambertW_input} and creates a class \code{LambertW_output} for
#' standard distributions as well as the user-defined distribution. This
#' \code{LambertW_output} represents the RV Y \eqn{\sim} Lambert W
#' \eqn{\times} 'MyFavoriteDistribution' with all its properties and R
#' functionality, such as random number generation (\code{rY}), pdf
#' (\code{dY}) and cdf (\code{pY}), etc.
#'
#' @inheritParams common-arguments
#' @author Georg M. Goerg
#' @keywords univar distribution datagen models
#' @examples
#'
#' # create a Gaussian N(1, 2) input
#' Gauss.input <- create_LambertW_input("normal", beta = c(1, 2))
#'
#' # create a heavy-tailed version of a normal
#' # gamma = 0, alpha = 1 are set by default; beta comes from input
#' params <- list(delta = c(0.3))
#' LW.Gauss <- create_LambertW_output(LambertW.input = Gauss.input,
#' theta = params)
#' LW.Gauss
#'
#' op <- par(no.readonly = TRUE)
#' par(mfrow = c(2, 1), mar = c(3, 3, 2, 1))
#' curve(LW.Gauss$d(x, params), -7, 10, col = "red")
#' # parameter will get detected automatically from the input
#' curve(LW.Gauss$d(x), -7, 10, col = "blue") # same in blue;
#'
#' # compare to the input case (i.e. set delta = 0)
#' params.0 <- params
#' params.0$delta <- 0
#'
#' # to evaluate the RV at a different parameter value,
#' # it is necessary to pass the new parameter
#' curve(LW.Gauss$d(x, params.0), -7, 10, add = TRUE, col = 1) #' par(op)
#'
#' curve(LW.Gauss$p(x, params), -7, 10, col = "red")
#' curve(LW.Gauss$p(x, params.0), -7, 10, add = TRUE, col = 1)
#'
#' test_normality(LW.Gauss$r(n = 100), add.legend = FALSE)
#'
#' ## generate a positively skewed version of a shifted, scaled t_3
#' t.input <- create_LambertW_input("t", beta = c(2, 1, 3))
#' t.input
#' params <- list(gamma = 0.05) # skew it
#' LW.t <- create_LambertW_output(LambertW.input = t.input, theta = params)
#' LW.t
#'
#' plot(t.input$d, -7, 11, col = 1)
#' plot(LW.t$d, -7, 11, col = 2, add = TRUE)
#' abline(v = t.input$beta["location"], lty = 2)
#'
#' # draw samples from the skewed t_3
#' yy <- LW.t$r(n = 100)
#' test_normality(yy)
#'
#' ### create a skewed exponential distribution
#' exp.input <- create_LambertW_input("exp", beta = 1)
#' plot(exp.input)
#' params <- list(gamma = 0.2)
#' LW.exp <- create_LambertW_output(exp.input, theta = params)
#' plot(LW.exp)
#'
#' # create a heavy-tail exponential distribution
#' params <- list(delta = 0.2)
#' LW.exp <- create_LambertW_output(exp.input, theta = params)
#' plot(LW.exp)
#'
#' # create a skewed chi-square distribution with 5 df
#' chi.input <- create_LambertW_input("chisq", beta = 5)
#' plot(chi.input)
#' params <- list(gamma = sqrt(2)*0.2)
#' LW.chi <- create_LambertW_output(chi.input, theta = params)
#' plot(LW.chi)
#'
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.