Nothing
#' @title Zero-mean, unit-variance version of standard distributions
#'
#' @description
#' Density, distribution function, quantile function and random number
#' generation for the shifted and scaled U of the
#' (location-)scale family input \eqn{X \sim F_X(x \mid \boldsymbol \beta)}
#' - see References.
#'
#' Since the normalized random variable U is one of the main building blocks of
#' Lambert W \eqn{\times} F distributions, these functions are wrappers used
#' by other functions such as \code{\link{dLambertW}} or
#' \code{\link{rLambertW}}.
#'
#' @name U-utils
#' @param u vector of quantiles.
#' @param n number of samples
#' @param p vector of probability levels
#' @inheritParams common-arguments
#' @return
#' \code{dU} evaluates the pdf at \code{y}, \code{pU} evaluates the
#' cdf, \code{qU} is the quantile function, and \code{rU} generates random
#' samples from U.
#' @keywords univar distribution datagen
#' @examples
#'
#' # a zero-mean, unit variance version of the t_3 distribution.
#' curve(dU(x, beta = c(1, 1, 3), distname = "t"), -4, 4,
#' ylab = "pdf", xlab = "u",
#' main = "student-t \n zero-mean, unit variance")
#' # cdf of unit-variance version of an exp(3) -> just an exp(1)
#' curve(pU(x, beta = 3, distname = "exp"), 0, 4, ylab = "cdf", xlab = "u",
#' main = "Exponential \n unit variance", col = 2, lwd = 2)
#' curve(pexp(x, rate = 1), 0, 4, add = TRUE, lty = 2)
#' # all have (empirical) variance 1
#' var(rU(n = 1000, distname = "chisq", beta = 2))
#' var(rU(n = 1000, distname = "normal", beta = c(3, 3)))
#' var(rU(n = 1000, distname = "exp", beta = 1))
#' var(rU(n = 1000, distname = "unif", beta = c(0, 10)))
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.