Nothing
#' @title Utilities for the parameter vector of Lambert W\eqn{\times} F distributions
#' @name theta-utils
#'
#' @description
#' These functions work with \eqn{\boldsymbol \theta = (\boldsymbol \beta, \gamma, \delta, \alpha)},
#' which fully parametrizes Lambert W\eqn{\times} F distributions.
#'
#' See Details for more background information on some functions.
#' @inheritParams common-arguments
#' @examples
#'
#' \dontrun{
#' check_theta(theta = list(beta = c(1, 1, -1)), distname = "t")
#' }
#'
#' check_theta(theta = list(beta = c(1, 1)), distname = "normal") # ok
#'
#' params <- list(beta = c(2, 1), delta = 0.3) # alpha and gamma are missing
#' complete_theta(params) # added default values
#'
#' params <- list(beta = c(2, 1), delta = 0.3, alpha = c(1, 2))
#' params <- complete_theta(params)
#' check_theta(params, distname = 'normal')
#'
#' ###
#' x <- rnorm(1000)
#' get_initial_theta(x, distname = "normal", type = "h")
#' get_initial_theta(x, distname = "normal", type = "s")
#'
#' # starting values for the skewed version of an exponential
#' y <- rLambertW(n = 1000, distname = "exp", theta=list(beta = 2, gamma = 0.1))
#' get_initial_theta(y, distname = "exp", type = "s")
#'
#' # starting values for the heavy-tailed version of a Normal = Tukey's h
#' y <- rLambertW(n = 1000, distname="normal", theta=list(beta = c(2, 1), delta = 0.2))
#' get_initial_theta(y, distname = "normal", type = "h")#'
#'
#' ###
#' get_theta_bounds(type = "hh", distname = "normal", beta = c(0, 1))
#'
#' ###
#' theta.restr <- theta2unbounded(list(beta = c(-1, 0.1),
#' delta = c(0.2, 0.2)),
#' distname = "normal")
#' theta.restr
#' # returns again the beta and delta from above
#' theta2unbounded(theta.restr, inverse = TRUE, distname = "normal")
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.