Nothing
#' @title R package for Lambert W\eqn{ \times} F distributions
#' @name LambertW-package
#' @aliases LambertW
#' @docType package
#'
#' @description
#'
#' This package is based on notation, definitions, and results of Goerg (2011,
#' 2015, 2016). I will not include these references in the description of
#' each single function.
#'
#' Lambert W\eqn{ \times} F distributions are a general framework to model and
#' transform skewed, heavy-tailed data. Lambert W\eqn{ \times} F random
#' variables (RV) are based on an input/ouput system with input RV \eqn{X
#' \sim F_X(x \mid \boldsymbol \beta)} and output \eqn{Y}, which is a
#' non-linearly transformed version of X -- with similar properties to X,
#' but slightly skewed and/or heavy-tailed. Then Y has a 'Lambert W
#' \eqn{\times F_X}' distribution - see References.
#'
#' \code{\link{get_distnames}} lists all implemented Lambert W \eqn{\times} F
#' distributions in this package. If you want to generate a
#' skewed/heavy-tailed version of a distribution that is not implemented,
#' you can use the do-it-yourself modular toolkit
#' (\code{\link{create_LambertW_input}} and
#' \code{\link{create_LambertW_output}}). It allows users to quickly
#' implement their own Lambert W x 'MyFavoriteDistribution' and use it in
#' their analysis right away.
#'
#' This package contains several functions to analyze skewed and heavy-tailed
#' data: simulate random samples (\code{\link{rLambertW}}), evaluate pdf and
#' cdf (\code{\link{dLambertW}} and \code{\link{pLambertW}}), estimate
#' parameters (\code{\link{IGMM}} and \code{\link{MLE_LambertW}}), compute
#' quantiles (\code{\link{qLambertW}}), and plot/print results nicely
#' (\code{\link{plot.LambertW_fit}}, \code{\link{print.LambertW_fit}},
#' \code{\link{summary.LambertW_fit}}).
#'
#' Probably the most useful function is \code{\link{Gaussianize}}, which works
#' similarly to \code{\link[base]{scale}}, but makes your data Gaussian (not
#' just centers and scales it, but also makes it symmetric and removes
#' excess kurtosis).
#'
#' If you use this package in your work please cite it
#' (\code{citation("LambertW")}). You can also send me an implementation of
#' your 'Lambert W \eqn{\times} YourFavoriteDistribution' to add to the
#' \pkg{LambertW} package (and I will reference your work introducing your
#' 'Lambert W \eqn{\times} YourFavoriteDistribution' here.)
#'
#' Feel free to contact me for comments, suggestions, code improvements,
#' implementation of new input distributions, bug reports, etc.
#'
#' @author Author and maintainer: Georg M. Goerg (im (at) gmge.org)
#' @references
#' Goerg, G.M. (2011). \dQuote{Lambert W Random Variables - A New Family of
#' Generalized Skewed Distributions with Applications to Risk
#' Estimation}. Annals of Applied Statistics, 5 (3), 2197-2230.
#' (\url{https://arxiv.org/abs/0912.4554}).
#'
#' Goerg, G.M. (2015). \dQuote{The Lambert Way to Gaussianize heavy-tailed data
#' with the inverse of Tukey's h transformation as a special case}. The
#' Scientific World Journal: Probability and Statistics with Applications in
#' Finance and Economics. Available at
#' \url{https://www.hindawi.com/journals/tswj/2015/909231/}.
#'
#' Goerg, G.M. (2016). \dQuote{Rebuttal of the ``Letter to the Editor of
#' Annals of Applied Statistics'' on Lambert W x F distributions and the
#' IGMM algorithm}. Available on arxiv.
#'
#' @keywords package
#' @import MASS stats graphics methods
#' @useDynLib LambertW, .registration=TRUE
# @rawNamespace useDynLib(LambertW, .registration=TRUE)
#' @importFrom Rcpp sourceCpp evalCpp
#' @examples
#'
#' \dontrun{
#' # Replicate parts of the analysis in Goerg (2011)
#' data(AA)
#' y <- AA[AA$sex=="f", "bmi"]
#' test_normality(y)
#'
#' fit.gmm <- IGMM(y, type = "s")
#' summary(fit.gmm) # gamma is significant and positive
#' plot(fit.gmm)
#'
#' # Compare empirical to theoretical moments (given parameter estimates)
#' moments.theory <-
#' mLambertW(theta = list(beta = fit.gmm$tau[c("mu_x", "sigma_x")],
#' gamma = fit.gmm$tau["gamma"]),
#' distname = "normal")
#' TAB <- rbind(unlist(moments.theory),
#' c(mean(y), sd(y), skewness(y), kurtosis(y)))
#' rownames(TAB) <- c("Theoretical (IGMM)", "Empirical")
#' TAB
#'
#' x <- get_input(y, fit.gmm$tau)
#' test_normality(x) # input is normal -> fit a Lambert W x Gaussian by MLE
#'
#' fit.ml <- MLE_LambertW(y, type = "s", distname = "normal", hessian = TRUE)
#' summary(fit.ml)
#' plot(fit.ml)
#' }
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.