These method takes the lattice information for a particular geometry from an LKinfo object and finds the locations or scales at each lattice points. These locations are the "nodes" or centers of the basis functions. The "scales" scales that distance function when the basis functions are evaluated and combine the spacing of lattice and the specificed overlap.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | ```
LKrigLatticeCenters(object, ...)
## Default S3 method:
LKrigLatticeCenters(object, ...)
## S3 method for class 'LKInterval'
LKrigLatticeCenters(object, Level, ...)
## S3 method for class 'LKRectangle'
LKrigLatticeCenters(object, Level, ...)
## S3 method for class 'LKBox'
LKrigLatticeCenters(object, Level, ...)
## S3 method for class 'LKCylinder'
LKrigLatticeCenters(object, Level = 1, physicalCoordinates = FALSE, ...)
## S3 method for class 'LKRing'
LKrigLatticeCenters(object, Level = 1,
physicalCoordinates = FALSE, ...)
## S3 method for class 'LKSphere'
LKrigLatticeCenters(object, Level, ...)
## Default S3 method:
LKrigLatticeScales(object, ...)
LKrigLatticeScales(object, ...)
``` |

`object` |
An LKinfo object. |

`Level` |
The multiresolution level. |

`physicalCoordinates` |
If TRUE the centers are returned in the
untransformed scale. See the explanation of the
For example with the LKRing geometry representing the equatorial slice of the solar atmosphere one observes a line of sight integral through the domain. This integral is obvious found with respect to the physical coordinates and not the lattice points. |

`...` |
Any additional arguments for this method. |

This method is of course geometry dependent and the default version just gives an error warning that a version based on the geometry is required. Typically generating these lattice points from the information in LKinfo should be easy as the grid points are already determined.

The scales reported are in the simplest form delta*overlap where delta is a vector of the lattice spacings and overlap (default is 2.5) is the amount of overlap between basis functions.

See the source for the function `LKrig.basis`

for how each of these
is used to evaluate the basis functions.

**Centers** A matrix where the rows index the points and columns index dimension.
In the case of the LKRectangle geometry attribute is added to indicate the
grid points used to generate the lattice. For LKSphere the centers are in lon/lat degrees.
( Use `directionCosines`

to convert to 3-d coordinates from lon/lat.)

**Scales** The default method returns the vector `delta*offset`

with length being the
number of multiresolution levels.

Doug Nychka

`LKrig.basis`

`LKrigSetup`

, `LKrigSetupAwght`

,
`LKrigSAR`

, `LKrig`

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | ```
x<- cbind( c(-1,2), c(-1,2))
LKinfo<- LKrigSetup( x, alpha=c( 1,.2,.01),
nlevel=3, a.wght=4.5, NC= 10)
# lattice centers for the second level
# not points added for buffer outside of spatial domain
look<- LKrigLatticeCenters(LKinfo, Level=2)
# convert grid format (gridList) to just locations
look<- make.surface.grid( look)
plot( look, cex=.5)
rect( -1,-1,2,2, border="red4")
x<- cbind( c(0, 360), c( 1,3))
LKinfo<- LKrigSetup( x, LKGeometry="LKRing",
nlevel=1, a.wght=4.5, NC= 10, V= diag(c( 1,.01) ) )
polar2xy<- function(x){
x[,2]*cbind( cos(pi*x[,1]/180), sin(pi*x[,1]/180))}
look1<- LKrigLatticeCenters( LKinfo, Level=1)
look2<- LKrigLatticeCenters( LKinfo, Level=1, physicalCoordinates=TRUE )
look3<- polar2xy( look2$Locations )
# Basis scales:
LKrigLatticeScales( LKinfo)
set.panel(3,1)
plot( make.surface.grid( look1))
plot( look2$Locations)
plot( look3)
``` |

Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.

All documentation is copyright its authors; we didn't write any of that.