Description Usage Arguments Details Value Author(s) See Also Examples

View source: R/LKrigSetupAwght.R

This method takes a vector or more complicated object and based on the geometry creates a list with the a.wght information.

1 2 3 4 5 6 7 8 | ```
LKrigSetupAwght(object, ...)
## Default S3 method:
LKrigSetupAwght(object, ...)
## S3 method for class 'LKRectangle'
LKrigSetupAwght(object, ...)
LKrigSetupAwghtObject(object)
``` |

`object` |
The partial or complete |

`...` |
Any additional arguments to this method. |

The simplest function of this method is to convert the a.wght value into a list that has the length of the number of levels. If only a scalar a.wght value is supplied then the default method just repeats this for each level.

The function `LKrigSetupAwghtObject`

uses the
a.wghtObject component in the LKinfo object to fill
in a.wght parameters for the different
levels. This is convenient because the lattice locations are different at each level. The parameters are filled in at level, `Level`

according to

1 2 3 4 |

here the predict function is whatever is supplied according to the class for a.wghtObject. Note that since the returned set of parameters will be in the format used internally a.wght here will be a list with each component being a matrix. Number of rows are each to the number of lattice points (or basis functions) at that level. This is easier implement that it may seem and see the examples in nonstationaryModels.

The attribute
`fastNormalize`

(either TRUE or FALSE) is attached to this
list to indicate how the marginal variance of the process should be
found.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ```
LKinfo<- LKrigSetup( x,LKGeometry="LKInterval", alpha=c( 1,.2,.01),
nlevel=3, a.wght=4.5, NC= 3)
LKrigSetupAwght( LKinfo)
[[1]]
[1] 4.5
[[2]]
[1] 4.5
[[3]]
[1] 4.5
attr(,"fastNormalize")
[1] FALSE
``` |

Currently the only geometry with fastNormalization being TRUE is for a rectangular domain.

For the LKRectangle geometry, however, more complicated
anisotropic and nonstationary a.wght specifications are possible.
See `LKrig`

for details. Also in the case that the
fastNormalization is TRUE for rectangles several more attributes are added to the `a.wght`

list that precompute some matrices of the SAR.

A list with `nlevel`

components. The attribute `fastNormalize`

is added to this list. In the case that the geometry is LKRectangle several
more attributes are added indicating the type of covariance model and
possibly an eigen decomposition of the SAR matrix exploiting Kronecker
products.

Doug Nychka

`LKrigSetup`

, `LKrigSetupAlpha`

,
`LKrigSAR`

, `LKrig`

1 2 3 4 5 6 7 8 9 10 11 12 13 | ```
x<- cbind( c(0,1))
LKinfo<- LKrigSetup( x,LKGeometry="LKInterval", alpha=c( 1,.2,.01),
nlevel=3, a.wght=4.5, NC= 3)
a.wghtList<- LKrigSetupAwght( LKinfo)
x<- cbind( c(0,1), c(0,1))
LKinfo<- LKrigSetup( x, alpha=c( 1,.2,.01),
nlevel=3, a.wght=4.5, NC= 3)
a.wghtList<- LKrigSetupAwght( LKinfo)
# see
names(attributes( a.wghtList))
``` |

LatticeKrig documentation built on May 1, 2018, 1:05 a.m.

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.