bayesresiduals: Computation of posterior residual outlying probabilities for...

Description Usage Arguments Value Author(s) Examples

Description

Computes the posterior probabilities that Bayesian residuals exceed a cutoff value for a linear regression model with a noninformative prior

Usage

1
bayesresiduals(lmfit,post,k)

Arguments

lmfit

output of the regression function lm

post

list with components beta, matrix of simulated draws of regression parameter, and sigma, vector of simulated draws of sampling standard deviation

k

cut-off value that defines an outlier

Value

vector of posterior outlying probabilities

Author(s)

Jim Albert

Examples

1
2
3
4
5
6
7
8
chirps=c(20,16.0,19.8,18.4,17.1,15.5,14.7,17.1,15.4,16.2,15,17.2,16,17,14.1)
temp=c(88.6,71.6,93.3,84.3,80.6,75.2,69.7,82,69.4,83.3,78.6,82.6,80.6,83.5,76.3)
X=cbind(1,chirps)
lmfit=lm(temp~X)
m=1000
post=blinreg(temp,X,m)
k=2
bayesresiduals(lmfit,post,k)

Example output

           1            2            3            4            5            6 
8.650461e-03 1.890880e-01 1.734943e-02 9.350177e-06 3.873963e-11 3.108944e-08 
           7            8            9           10           11           12 
1.527867e-02 2.049203e-12 2.495306e-01 1.725156e-02 8.974623e-03 3.655172e-11 
          13           14           15 
1.560055e-05 1.102365e-06 5.687012e-02 

LearnBayes documentation built on May 1, 2019, 7:03 p.m.