Description Usage Arguments Value Author(s) Examples
Implements a Metropolis-within-Gibbs sampling algorithm for an arbitrary real-valued posterior density defined by the user
1 |
logpost |
function defining the log posterior density |
start |
array with a single row that gives the starting value of the parameter vector |
m |
the number of iterations of the chain |
scale |
vector of scale parameters for the random walk Metropolis steps |
... |
data that is used in the function logpost |
par |
a matrix of simulated values where each row corresponds to a value of the vector parameter |
accept |
vector of acceptance rates of the Metropolis steps of the algorithm |
Jim Albert
1 2 3 4 5 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.