mle-methods | R Documentation |
Performs maximum likelihood estimation for parametric models of interval data
## S4 method for signature 'IData'
mle(Sdt, Model="Normal", CovCase="AllC", SelCrit=c("BIC","AIC"),
k2max=1e6, OptCntrl=list(), ...)
Sdt |
An IData object representing interval-valued units. |
Model |
The joint distribution assumed for the MidPoint and LogRanges. Current alternatives are “Normal” for Gaussian distributions, “SNNormal” for Skew-Normal and “NrmandSKN” for both Gaussian and Skew-Normal distributions. |
CovCase |
Configuration of the variance-covariance matrix: The string “AllC” for all possible configurations (default), or a set of integers between 1 and 4. |
SelCrit |
The model selection criterion. |
k2max |
Maximal allowed l2-norm condition number for correlation matrices. Correlation matrices with condition number above k2max are considered to be numerically singular, leading to degenerate results. |
OptCntrl |
List of optional control parameters to be passed to the optimization routine. See the documentation of RepLOptim for a description of the available options. |
... |
Other named arguments. |
Azzalini, A. and Dalla Valle, A. (1996), The multivariate skew-normal distribution. Biometrika 83(4), 715–726.
Brito, P., Duarte Silva, A. P. (2012): "Modelling Interval Data with Normal and Skew-Normal Distributions". Journal of Applied Statistics, Volume 39, Issue 1, 3-20.
IData
, RepLOptim
# Create an Interval-Data object containing the intervals of temperatures by quarter
# for 899 Chinese meteorological stations.
ChinaT <- IData(ChinaTemp[1:8])
# Estimate parameters by maximum likelihood assuming a Gaussian distribution
ChinaE <- mle(ChinaT)
cat("China maximum likelhiood estimation results =\n")
print(ChinaE)
cat("Standard Errors of Estimators:\n")
print(stdEr(ChinaE))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.