| plotInfCrt-methods | R Documentation | 
Method plotInfCrt displays a plot representing the values of an appropriate information criterion (currently either BIC or AIC) for the models whose results are stored in an IdtMclust-method object. A supplementary short output message prints the values of the chosen criterion for the 'nprin' best models.
## S4 method for signature 'IdtMclust'
plotInfCrt(object, crt=object@SelCrit, legpos="right", nprnt=5,
  legendout=TRUE, outlegsize="adjstoscreen", outlegdisp="adjstoscreen", 
  legendpar=list(), ...)
object | 
 An object of type “IdtMclust” representing the the clusterig results of an Interval-valued data set obtained by the function “IdtMclust”.  | 
crt | 
 The information criteria whose values are to be displayed.  | 
legpos | 
 Legend position. Alternatives are “right” (default), “left”, “bottomright”, “bottomleft”, “topright” and “topleft” .  | 
nprnt | 
 Number of solutions for which the value of the information criterio should be printed in an suplmentary short output message.  | 
legendout | 
 A boolean flag indicating if the legend should be placed outside (default) or inside the main plot.  | 
outlegsize | 
 The size (in inches) to be reserved for a legend placed outside the main plot, or the string “adjstoscreen” (default) for an automatic adjustment of the plot and legend sizes.  | 
outlegdisp | 
 The displacement (as a percentage of the main plot size) of the outer margin for a legend placed outside the main plot, or the string “adjstoscreen” (default) for an automatic adjustment of the legend position.  | 
legendpar | 
 A named list with graphical parameters for the plot legend.  | 
... | 
 Graphical arguments to be passed to methods.  | 
IdtMclust, Idtmclust,  pcoordplot
## Not run: 
# Create an Interval-Data object containing the intervals of loan data
# (from the Kaggle Data Science platform) aggregated by loan purpose
LbyPIdt <- IData(LoansbyPurpose_minmaxDt,
                 VarNames=c("ln-inc","ln-revolbal","open-acc","total-acc")) 
#Fit homoscedastic and heteroscedastic mixtures up to Gaussian mixtures with up to seven components
mclustres <- Idtmclust(LbyPIdt,G=1:7,Mxt="HomandHet")
#Compare de model fit according to the BIC
plotInfCrt(mclustres,legpos="bottomleft")
#Display the results of the best three mixtures according to the BIC
summary(mclustres,parameters=TRUE,classification=TRUE)
pcoordplot(mclustres)
summary(mclustres,parameters=TRUE,classification=TRUE,model="HetG2C2")
summary(mclustres,parameters=TRUE,classification=TRUE,model="HomG6C1")
pcoordplot(mclustres,model="HomG6C1")
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.