conf.limits.ncf | R Documentation |
Function to determine the noncentral parameter that leads to the observed F-value, so that a confidence interval around the population F-value can be conducted. Used for forming confidence intervals around noncentral parameters (given the monotonic relationship between the F-value and the noncentral value).
conf.limits.ncf(F.value = NULL, conf.level = .95, df.1 = NULL,
df.2 = NULL, alpha.lower = NULL, alpha.upper = NULL, tol = 1e-09,
Jumping.Prop = 0.1)
F.value |
the observed F-value |
conf.level |
the desired degree of confidence for the interval |
df.1 |
the numerator degrees of freedom |
df.2 |
the denominator degrees of freedom |
alpha.lower |
Type I error for the lower confidence limit |
alpha.upper |
Type I error for the upper confidence limit |
tol |
tolerance for iterative convergence |
Jumping.Prop |
Value used in the iterative scheme to determine the noncentral
parameters necessary for confidence interval construction using noncentral
F-distributions ( |
This function is the relied upon by the ci.R2
and ss.aipe.R2
. If the function fails
(or if a function relying upon this function fails), adjust the Jumping.Prop
(to a smaller value).
Lower.Limit |
Value of the distribution with |
Prob.Less.Lower |
Proportion of cases falling below |
Upper.Limit |
Value of the distribution with |
Prob.Greater.Upper |
Proportion of cases falling above |
Ken Kelley (University of Notre Dame; KKelley@ND.Edu); Keke Lai (University of Califonia-Merced)
ss.aipe.R2
, ci.R2
, conf.limits.nct
conf.limits.ncf(F.value = 5, conf.level = .95, df.1 = 5,
df.2 = 100)
# A one sided confidence interval.
conf.limits.ncf(F.value = 5, conf.level = NULL, df.1 = 5,
df.2 = 100, alpha.lower = .05, alpha.upper = 0, tol = 1e-09,
Jumping.Prop = 0.1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.