R/RandomForestModel.r

Defines functions RandomForestModel

Documented in RandomForestModel

#' @title Random forest model
#' @name RandomForestModel
#' @description A function to train a random forest model to classify medulloblastoma subgroups using DNA methylation beta values (Illumina Infinium HumanMethylation450). Prediction is followed by training if new data is provided.
#' @export
#' @importFrom caTools sample.split
#' @importFrom caret createFolds
#' @importFrom parallel mclapply
#' @importFrom stats predict na.omit
#' @importFrom stringr %>%
#' @param SplitRatio Train and test split ratio. A value greater or equal to zero and less than one.
#' @param CV The number of folds for cross-validation. It should be greater than one.
#' @param NTree The number of trees to be grown.
#' @param NCores The number of cores for parallel computing.
#' @param NewData A methylation beta values input from the ReadMethylFile function.
#' @return A list
#' @examples
#' set.seed(21)
#' rf <- RandomForestModel(SplitRatio = 0.8,
#'                         CV = 2,
#'                         NTree = 5,
#'                         NCores = 1,
#'                         NewData = NULL)
load("data/Data1.RData")
RandomForestModel <- function(SplitRatio = 0.8,
                              CV = 10,
                              NTree = 100,
                              NCores = 1,
                              NewData = NULL) {
  
  if (!requireNamespace("randomForest", quietly = TRUE)) {
    stop("Package 'randomForest' required but not installed.")
  }
  
  if(CV <= 1) {
    stop('Please provide more than 1 cross validation folds.')
  }
  Data1$subgroup <- factor(Data1$subgroup)
  fac <- ncol(Data1)
  if(!is.null(NewData)){
    if(colnames(NewData)[1] != "ID") {
      stop('Please prodide correct NewData file.')
    } else {
      rownames(NewData) <- NewData$ID
      NewData <- NewData[,-1]
      common_mat <- which(colnames(Data1) %in% rownames(NewData))
      common_new <- which(rownames(NewData) %in% colnames(Data1)[-fac])
      Data1 <- Data1[, c(common_mat, fac)]
      NewData <- NewData[common_new, ] %>%
        t() %>%
        data.frame()
    }
  }
  fac <- ncol(Data1)
  split <- sample.split(Data1[, fac], SplitRatio = SplitRatio)
  training_set <- subset(Data1, split == TRUE)
  test_set <- subset(Data1, split == FALSE)
  folds <- createFolds(Data1[,fac] , CV)
  cv <- mclapply(folds, function(x){
    training_fold <- training_set[-x, ]
    test_fold <- test_set[-x, ]
    classifier <- randomForest::randomForest(x = training_fold[-fac],
                                             y = training_fold[, fac],
                                             ntree = NTree,
                                             mtry = round(NROW(training_fold)/3),
                                             maxnodes = 6,
                                             na.action = na.omit)
    y_pred <- predict(classifier, newdata = test_fold[-fac])
    conta <- table(test_fold[, fac], y_pred)
    result <- ConfusionMatrix(test_fold[, fac], y_pred)
    if(!is.null(NewData)) {
    y_pred_NewData <- predict(classifier, newdata = NewData)
    } else {
      y_pred_NewData <- NULL
    }
    allresult <- list(ConfusionMat = conta, result = result, pnewdata = y_pred_NewData)
    return(allresult)
  }, mc.cores = NCores)
  return(cv)
}

Try the MBMethPred package in your browser

Any scripts or data that you put into this service are public.

MBMethPred documentation built on Sept. 18, 2023, 5:13 p.m.