Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
echo = TRUE,
fig.width = 6,
message = FALSE,
warning = FALSE
)
## ----setup, include = FALSE---------------------------------------------------
require(MBMethPred)
## -----------------------------------------------------------------------------
# set.seed(1234)
# fac <- ncol(Data1)
# NewData <- sample(data.frame(t(Data1[,-fac])),10)
# NewData <- cbind(rownames(NewData), NewData)
# colnames(NewData)[1] <- "ID"
# write.csv(NewData, "NewData.csv", quote = FALSE, row.names = FALSE)
# methyl <- ReadMethylFile(File = "NewData.csv")
## ----fig.width= 8, fig.height=5-----------------------------------------------
data <- Data2[1:20,]
data <- cbind(rownames(data), data)
colnames(data)[1] <- "ID"
BoxPlot(File = data, Projname = NULL)
## -----------------------------------------------------------------------------
data <- data.frame(t(Data2[1:100,]))
data <- cbind(rownames(data), data)
colnames(data)[1] <- "ID"
TSNEPlot(File = data, NCluster = 4)
## -----------------------------------------------------------------------------
# rgl.snapshot('tsne3d.png', fmt = 'png')
## -----------------------------------------------------------------------------
# data(Data2) # Gene expression
# Data2 <- cbind(rownames(Data2), Data2)
# colnames(Data2)[1] <- "ID"
# write.csv(Data2, "Data2.csv", row.names = FALSE)
# Data2 <- ReadSNFData(File = "Data2.csv")
## -----------------------------------------------------------------------------
data(RLabels) # Real labels
data(Data2) # Methylation
data(Data3) # Gene expression
snf <- SimilarityNetworkFusion(Files = list(Data2, Data3),
NNeighbors = 13,
Sigma = 0.75,
NClusters = 4,
CLabels = c("Group4", "SHH", "WNT", "Group3"),
RLabels = RLabels,
Niterations = 60)
snf
## -----------------------------------------------------------------------------
set.seed(1234)
fac <- ncol(Data1)
NewData <- sample(data.frame(t(Data1[,-fac])),10)
NewData <- cbind(rownames(NewData), NewData)
colnames(NewData)[1] <- "ID"
svm <- SupportVectorMachineModel(SplitRatio = 0.8,
CV = 10,
NCores = 1,
NewData = NewData)
ModelMetrics(Model = svm)
NewDataPredictionResult(Model = svm)
## -----------------------------------------------------------------------------
set.seed(1234)
fac <- ncol(Data1)
NewData <- sample(data.frame(t(Data1[,-fac])),10)
NewData <- cbind(rownames(NewData), NewData)
colnames(NewData)[1] <- "ID"
knn <- KNearestNeighborModel(SplitRatio = 0.8,
CV = 10,
K = 3,
NCores = 1,
NewData = NewData)
ModelMetrics(Model = knn)
NewDataPredictionResult(Model = knn)
## -----------------------------------------------------------------------------
set.seed(1234)
fac <- ncol(Data1)
NewData <- sample(data.frame(t(Data1[,-fac])),10)
NewData <- cbind(rownames(NewData), NewData)
colnames(NewData)[1] <- "ID"
rf <- RandomForestModel(SplitRatio = 0.8,
CV = 10,
NTree = 100,
NCores = 1,
NewData = NewData)
ModelMetrics(Model = rf)
NewDataPredictionResult(Model = rf)
## -----------------------------------------------------------------------------
set.seed(1234)
fac <- ncol(Data1)
NewData <- sample(data.frame(t(Data1[,-fac])),10)
NewData <- cbind(rownames(NewData), NewData)
colnames(NewData)[1] <- "ID"
xgboost <- XGBoostModel(SplitRatio = 0.8,
CV = 10,
NCores = 1,
NewData = NewData)
ModelMetrics(Model = xgboost)
NewDataPredictionResult(Model = xgboost)
## -----------------------------------------------------------------------------
set.seed(1234)
fac <- ncol(Data1)
NewData <- sample(data.frame(t(Data1[,-fac])),10)
NewData <- cbind(rownames(NewData), NewData)
colnames(NewData)[1] <- "ID"
lda <- LinearDiscriminantAnalysisModel(SplitRatio = 0.8,
CV = 10,
NCores = 1,
NewData = NewData)
ModelMetrics(Model = lda)
NewDataPredictionResult(Model = lda)
## -----------------------------------------------------------------------------
set.seed(1234)
fac <- ncol(Data1)
NewData <- sample(data.frame(t(Data1[,-fac])),10)
NewData <- cbind(rownames(NewData), NewData)
colnames(NewData)[1] <- "ID"
nb <- NaiveBayesModel(SplitRatio = 0.8,
CV = 10,
Threshold = 0.8,
NCores = 1,
NewData = NewData)
ModelMetrics(Model = nb)
NewDataPredictionResult(Model = nb)
## -----------------------------------------------------------------------------
# set.seed(1234)
# fac <- ncol(Data1)
# NewData <- sample(data.frame(t(Data1[,-fac])),10)
# NewData <- cbind(rownames(NewData), NewData)
# colnames(NewData)[1] <- "ID"
# ann <- NeuralNetworkModel(Epochs = 100,
# NewData = NewData,
# InstallTensorFlow = TRUE)
# ModelMetrics(Model = ann)
# NewDataPredictionResult(Model = ann)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.