diagnostic.mcmc: Plots three diagnostic plots to check the validity of the...

Description Usage Arguments Value Author(s) References Examples

View source: R/diagnostic.mcmc.R

Description

Predicted vs observed plot tests for linearity, Scale-location plot tests for homoscedasticity, and Normal QQ plot tests for normality of the residuals.

Usage

1

Arguments

model

MCMCglmm object (a model fitted by mcmc.qpcr or mcmc.qpcr.gauss), obtained with additional options, 'pl=T, pr=T'

...

Various plot() options to modify color, shape and size of the plotteed points.

Value

A plot with three panels.

Author(s)

Mikhail V. Matz, UT Austin <matz@utexas.edu>

References

Matz MV, Wright RM, Scott JG (2013) No Control Genes Required: Bayesian Analysis of qRT-PCR Data. PLoS ONE 8(8): e71448. doi:10.1371/journal.pone.0071448

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
# loading Cq data and amplification efficiencies
data(coral.stress) 
data(amp.eff) 
# extracting a subset of data 
cs.short=subset(coral.stress, timepoint=="one")

genecolumns=c(5,6,16,17) # specifying columns corresponding to genes of interest
conditions=c(1:4) # specifying columns containing factors  

# calculating molecule counts and reformatting:
dd=cq2counts(data=cs.short,genecols=genecolumns,
condcols=conditions,effic=amp.eff,Cq1=37) 

# fitting the model
mm=mcmc.qpcr(
	fixed="condition",
	data=dd,
	controls=c("nd5","rpl11"),
	pr=TRUE,pl=TRUE, # these flags are necessary for diagnostics
	nitt=4000 # remove this line when analyzing real data!
)
diagnostic.mcmc(mm)

MCMC.qpcr documentation built on March 31, 2020, 5:22 p.m.