Nothing
## ---- eval = FALSE------------------------------------------------------------
# library(rjags)
#
# # create JAGS model
# mf <- "
# model {
# for (i in 1:10)
# {
# y[i] ~ dnorm(mu, 0.01);
# }
# mu ~ dnorm(0, 0.01)
# }
# "
#
# data <- list(y = rnorm(10))
#
# jm <- rjags::jags.model(
# textConnection(mf),
# data = data,
# n.chains = 3)
#
# jags_out <- rjags::coda.samples(
# jm,
# variable.names = 'mu',
# n.iter = 500)
## -----------------------------------------------------------------------------
library(MCMCvis)
## ---- eval = FALSE------------------------------------------------------------
# MCMCsummary(jags_out, round = 2)
## ---- eval = FALSE------------------------------------------------------------
# ## mean sd 2.5% 50% 97.5% Rhat n.eff
# ## mu -0.28 2.97 -6.13 -0.14 5.22 1 1397
## ---- eval = FALSE------------------------------------------------------------
# library(nimble)
#
# # create NIMBLE model
# mf2 <- nimbleCode({
# for (i in 1:10) {
# y[i] ~ dnorm(mu, 0.01);
# }
# mu ~ dnorm(0, 0.01)
# })
#
# nimble_out <- nimbleMCMC(
# code = mf2,
# constants = list(N = 10),
# data = data,
# inits = list(mu = 0),
# nchains = 4,
# niter = 500)
## ---- eval = FALSE------------------------------------------------------------
# MCMCsummary(nimble_out, round = 2)
## ---- eval = FALSE------------------------------------------------------------
# ## mean sd 2.5% 50% 97.5% Rhat n.eff
# ## mu -0.03 2.99 -5.76 -0.1 5.88 1 2000
## ---- eval = FALSE------------------------------------------------------------
# library(rstan)
#
# # create Stan model
# sm <- "
# data {
# real y[10];
# }
# parameters {
# real mu;
# }
# model {
# for (i in 1:10) {
# y[i] ~ normal(mu, 10);
# }
# mu ~ normal(0, 10);
# }
# "
#
# stan_out <- stan(
# model_code = sm,
# data = data,
# iter = 500)
## ---- eval = FALSE------------------------------------------------------------
# MCMCsummary(stan_out, round = 2)
## ---- eval = FALSE------------------------------------------------------------
# ## mean sd 2.5% 50% 97.5% Rhat n.eff
# ## mu -0.51 2.82 -6.06 -0.36 5.07 1.01 414
# ## lp__ -0.45 0.61 -2.27 -0.23 -0.01 1.00 508
## ---- message = FALSE---------------------------------------------------------
MCMCsummary(MCMC_data)
## ---- message = FALSE---------------------------------------------------------
MCMCsummary(MCMC_data, round = 2)
## -----------------------------------------------------------------------------
MCMCsummary(MCMC_data,
params = 'alpha',
round = 2)
## -----------------------------------------------------------------------------
MCMCsummary(MCMC_data,
params = 'alpha[1]',
ISB = FALSE,
exact = TRUE,
round = 2)
## -----------------------------------------------------------------------------
MCMCsummary(MCMC_data,
params = 'alpha\\[1\\]',
ISB = FALSE,
exact = FALSE,
round = 2)
## -----------------------------------------------------------------------------
MCMCsummary(MCMC_data,
params = 'all',
excl = 'alpha',
ISB = FALSE,
exact = FALSE,
round = 2)
## -----------------------------------------------------------------------------
MCMCsummary(MCMC_data,
params = 'alpha',
Rhat = TRUE,
n.eff = TRUE,
round = 2)
## -----------------------------------------------------------------------------
MCMCsummary(MCMC_data,
params = 'alpha',
Rhat = TRUE,
n.eff = TRUE,
probs = c(0.1, 0.5, 0.9),
round = 2)
## -----------------------------------------------------------------------------
MCMCsummary(MCMC_data,
params = 'alpha',
Rhat = TRUE,
n.eff = TRUE,
HPD = TRUE,
hpd_prob = 0.8,
round = 2)
## -----------------------------------------------------------------------------
MCMCsummary(MCMC_data,
params = 'alpha',
Rhat = TRUE,
n.eff = TRUE,
round = 2,
func = function(x) ecdf(x)(-10), func_name = "ecdf-10",
pg0 = TRUE)
## -----------------------------------------------------------------------------
MCMCpstr(MCMC_data,
params = 'alpha',
func = mean,
type = 'summary')
## -----------------------------------------------------------------------------
MCMCpstr(MCMC_data, func = function(x) quantile(x, probs = c(0.01, 0.99)))
## -----------------------------------------------------------------------------
ex <- MCMCpstr(MCMC_data, type = 'chains')
dim(ex$alpha)
## ---- fig.width = 7, fig.height = 5, fig.align = 'center'---------------------
MCMCtrace(MCMC_data,
params = c('beta[1]', 'beta[2]', 'beta[3]'),
ISB = FALSE,
exact = TRUE,
pdf = FALSE)
## ---- fig.width = 7, fig.height = 5, fig.align = 'center'---------------------
MCMCtrace(MCMC_data,
params = 'beta',
type = 'density',
ind = TRUE,
pdf = FALSE)
## ---- eval = FALSE, fig.align = 'center'--------------------------------------
# MCMCtrace(MCMC_data,
# pdf = TRUE,
# open_pdf = FALSE,
# filename = 'MYpdf',
# wd = 'DIRECTORY_HERE')
## ---- fig.width = 7, fig.height = 5, fig.align = 'center'---------------------
MCMCtrace(MCMC_data,
params = c('beta[1]', 'beta[2]', 'beta[3]'),
ISB = FALSE,
exact = TRUE,
iter = 100,
ind = TRUE,
pdf = FALSE)
## ---- fig.width = 7, fig.height = 5, fig.align = 'center'---------------------
# note that the same prior used for all parameters
# the following prior is equivalent to dnorm(0, 0.001) in JAGS
PR <- rnorm(15000, 0, 32)
MCMCtrace(MCMC_data,
params = c('beta[1]', 'beta[2]', 'beta[3]'),
ISB = FALSE,
exact = TRUE,
priors = PR,
pdf = FALSE,
Rhat = TRUE,
n.eff = TRUE)
## ---- fig.width = 7, fig.height = 5, fig.align = 'center'---------------------
MCMCtrace(MCMC_data,
params = c('beta[1]', 'beta[2]', 'beta[3]'),
ISB = FALSE,
exact = TRUE,
priors = PR,
pdf = FALSE,
post_zm = FALSE)
## ---- fig.width = 7, fig.height = 5, fig.align = 'center'---------------------
PPO <- MCMCtrace(MCMC_data,
params = c('beta[1]', 'beta[2]', 'beta[3]'),
ISB = FALSE,
exact = TRUE,
priors = PR,
plot = FALSE,
PPO_out = TRUE)
PPO
## ---- fig.width = 7, fig.height = 5, fig.align = 'center'---------------------
MCMCtrace(MCMC_data,
params = c('beta[1]', 'beta[2]', 'beta[3]'),
ISB = FALSE,
exact = TRUE,
priors = PR,
pdf = FALSE,
Rhat = TRUE,
n.eff = TRUE,
xlab_tr = 'This is the x for trace',
ylab_tr = 'This is the y for trace',
main_den = 'Custom density title',
lwd_den = 3,
lty_pr = 2,
col_pr = 'green',
sz_txt = 1.3,
sz_ax = 2,
sz_ax_txt = 1.2,
sz_tick_txt = 1.2,
sz_main_txt = 1.3)
## ---- fig.width = 7, fig.height = 5, fig.align = 'center'---------------------
# generating values for each parameter used to simulate data
GV <- c(-10, -5.5, -15)
MCMCtrace(MCMC_data,
params = c('beta[1]', 'beta[2]', 'beta[3]'),
ISB = FALSE,
exact = TRUE,
gvals = GV,
pdf = FALSE)
## -----------------------------------------------------------------------------
ex <- MCMCchains(MCMC_data, params = 'beta')
## -----------------------------------------------------------------------------
apply(ex, 2, mean)
## -----------------------------------------------------------------------------
ex2 <- MCMCchains(MCMC_data,
params = 'beta',
mcmc.list = TRUE)
## ---- fig.width = 7, fig.height = 5, fig.align = 'center'---------------------
MCMCplot(MCMC_data,
params = 'beta',
ci = c(50, 90))
## ---- fig.width = 7, fig.height = 5, fig.align = 'center'---------------------
MCMCplot(MCMC_data,
params = 'beta',
ci = c(50, 80),
HPD = TRUE)
## ---- fig.width = 7, fig.height = 5, fig.align = 'center'---------------------
MCMCplot(MCMC_data,
params = 'beta',
ref_ovl = TRUE)
## ---- fig.width = 7, fig.height = 5, fig.align = 'center'---------------------
MCMCplot(MCMC_data,
params = 'beta',
rank = TRUE,
xlab = 'PARAMETER ESTIMATE',
guide_lines = TRUE)
## ---- fig.width = 7, fig.height = 5, fig.align = 'center'---------------------
MCMCplot(MCMC_data,
params = 'beta',
rank = TRUE,
horiz = FALSE,
ylab = 'PARAMETER ESTIMATE')
## ---- fig.width = 7, fig.height = 5, fig.align = 'center'---------------------
MCMCplot(object = MCMC_data,
object2 = MCMC_data2,
params = 'beta',
offset = 0.1,
ref_ovl = TRUE)
## ---- fig.width = 7, fig.height = 5, fig.align = 'center'---------------------
MCMCplot(MCMC_data,
params = 'beta',
xlim = c(-60, 40),
xlab = 'My x-axis label',
main = 'MCMCvis plot',
labels = c('First param', 'Second param', 'Third param',
'Fourth param', 'Fifth param', 'Sixth param'),
col = c('red', 'blue', 'green', 'purple', 'orange', 'black'),
sz_labels = 1.5,
sz_med = 2,
sz_thick = 7,
sz_thin = 3,
sz_ax = 4,
sz_main_txt = 2)
## -----------------------------------------------------------------------------
# note that the same prior used for all parameters
# the following prior is equivalent to dnorm(0, 0.001) in JAGS
PR <- rnorm(15000, 0, 32)
PPO <- MCMCtrace(MCMC_data,
params = c('beta[1]', 'beta[2]', 'beta[3]'),
ISB = FALSE,
exact = TRUE,
priors = PR,
plot = FALSE,
PPO_out = TRUE)
## ---- fig.width = 7, fig.height = 5, fig.align = 'center'---------------------
MCMCplot(MCMC_data,
params = c('beta[1]', 'beta[2]', 'beta[3]'),
ISB = FALSE,
exact = TRUE,
xlim = c(-60, 35))
# each parameter is a y-unit of 1
for (i in 1:NROW(PPO)) {
text(x = 10, y = NROW(PPO) - i + 1, paste0('PPO: ', PPO[i,2], '%'), pos = 4, col = 'red')
}
## ---- eval = FALSE------------------------------------------------------------
# MCMCdiag(model_fit,
# round = 3,
# file_name = 'model-summary-YYYY-MM-DD',
# dir = 'Results',
# mkdir = 'model-YYYY-MM-DD',
# add_field = '1.0',
# add_field_names = 'Data version',
# save_obj = TRUE,
# obj_name = 'model-fit-YYYY-MM-DD',
# add_obj = list(DATA, sessionInfo()),
# add_obj_names = c('model-data-YYYY-MM-DD', 'session-info-YYYY-MM-DD'),
# cp_file = c('model.stan', 'fit-model.R'),
# cp_file_names = c('model-YYYY-MM-DD.stan, fit-model-YYYY-MM-DD.R'))
#
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.