Description Details Author(s) References Examples
The Markov Decision Processes (MDP) toolbox proposes functions related to the resolution of discrete-time Markov Decision Processes: finite horizon, value iteration, policy iteration, linear programming algorithms with some variants and also proposes some functions related to Reinforcement Learning.
Package: | MDPtoolbox |
Type: | Package |
Version: | 4.0.3 |
Date: | 2017-03-02 |
License: | BSD (4.4) |
Iadine Chadès <Iadine.Chades@csiro.au>
Guillaume Chapron <gchapron@carnivoreconservation.org>
Marie-Josée Cros <Marie-Josee.Cros@toulouse.inra.fr>
Fredérick Garcia <fgarcia@toulouse.inra.fr>
Régis Sabbadin <Regis.Sabbadin@toulouse.inra.fr>
Chadès, I., Chapron, G., Cros, M.-J., Garcia, F. & Sabbadin, R. 2014. MDPtoolbox: a multi-platform toolbox to solve stochastic dynamic programming problems. Ecography DOI:10.1111/ecog.00888
Puterman, M. L. 1994. Markov Decision Processes. John Wiley & Sons, New-York.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | # Generates a random MDP problem
set.seed(0)
mdp_example_rand(2, 2)
mdp_example_rand(2, 2, FALSE)
mdp_example_rand(2, 2, TRUE)
mdp_example_rand(2, 2, FALSE, matrix(c(1,0,1,1),2,2))
# Generates a MDP for a simple forest management problem
MDP <- mdp_example_forest()
# Find an optimal policy
results <- mdp_policy_iteration(MDP$P, MDP$R, 0.9)
# Visualise the policy
results$policy
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.