mdp_value_iteration_bound_iter: Computes a bound for the number of iterations for the value...

Description Usage Arguments Details Value Examples

Description

Computes a bound on the number of iterations for the value iteration algorithm

Usage

1
mdp_value_iteration_bound_iter(P, R, discount, epsilon, V0)

Arguments

P

transition probability array. P can be a 3 dimensions array [S,S,A] or a list [[A]], each element containing a sparse matrix [S,S].

R

reward array. R can be a 3 dimensions array [S,S,A] or a list [[A]], each element containing a sparse matrix [S,S] or a 2 dimensional matrix [S,A] possibly sparse.

discount

discount factor. discount is a real which belongs to ]0; 1[.

epsilon

(optional) : search for an epsilon-optimal policy epsilon is a real in ]0; 1]. By default, epsilon is set to 0.01.

V0

(optional) : starting value function. V0 is a S length vector. By default, V0 is only composed of 0 elements.

Details

mdp_value_iteration_bound_iter computes a bound on the number of iterations for the value iteration algorithm to find an epsilon-optimal policy with use of span for the stopping criterion.

Value

max_iter

maximum number of iterations to be done. max_iter is an integer greater than 0.

cpu_time

CPU time used to run the program.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
# With a non-sparse matrix
P <- array(0, c(2,2,2))
P[,,1] <- matrix(c(0.5, 0.5, 0.8, 0.2), 2, 2, byrow=TRUE)
P[,,2] <- matrix(c(0, 1, 0.1, 0.9), 2, 2, byrow=TRUE)
R <- matrix(c(5, 10, -1, 2), 2, 2, byrow=TRUE)
mdp_value_iteration_bound_iter(P, R, 0.9)

# With a sparse matrix
P <- list()
P[[1]] <- Matrix(c(0.5, 0.5, 0.8, 0.2), 2, 2, byrow=TRUE, sparse=TRUE)
P[[2]] <- Matrix(c(0, 1, 0.1, 0.9), 2, 2, byrow=TRUE, sparse=TRUE)
mdp_value_iteration_bound_iter(P, R, 0.9)

MDPtoolbox documentation built on May 2, 2019, 2:10 p.m.