Nothing
#' High density Genetic Linkage Mapping using Multidimensional Scaling
#'
#' MDSmap provides functions for estimating genetic linkage maps for
#' markers from a single linkage group from pairwise intermarker map
#' distances using the Haldane or Kosambi map function; or recombination
#' fractions. It either uses constrained weighted metric multidimensional
#' scaling (cMDS) in 2 dimensions or unconstrained weighted metric
#' multidimensional scaling (MDS) followed by fitting a principal curve
#' (PC) in either 2 or 3 dimensions. Pairwise distances can be weighted
#' either by the LOD score or LOD2. There are functions for diagnostic
#' plots, estimating the difference between the observed and estimated
#' difference between points and their nearest informative neighbour,
#' which may be useful in deciding which weights to use and also for
#' testing estimated maps against a map estimated externally.
#'
#' The main top level functions to use: \code{\link{calc.maps.pc}} and
#' \code{\link{calc.maps.sphere}}, and use \code{\link{plot.pcmap}},
#' \code{\link{plot.spheremap}} or \code{\link{plot.pcmap3d}} to visualize
#' the result.
#'
#' @name MDSMap-package
#' @author Katharine F. Preedy <Katharine.preedy@bioss.ac.uk>
#' @import smacof princurve rgl reshape
#' @examples
#' map<-calc.maps.pc(system.file("extdata", "lgI.txt", package="MDSMap"),
#' ndim=2,weightfn='lod',mapfn='haldane')
#' plot(map)
#'
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.