R/accessors.MGLMsparsereg.R

Defines functions maxlambdaMGLM dofMGLM

# extract maxlambda from MGLMsparsereg class
##============================================================## 

#' @name maxlambda 
#' @title Extract maximum lambda 
#' @description \code{maxlambda} extracts the maximum tuning parameter that ensures 
#' the estimated regression coefficients are not all zero for the object of class \code{MGLMsparsereg}. 
#' @param object an object of class \code{MGLMsparsereg} from which
#' maximum lambda value can be extracted.
#' @return Returns a maximum lambda value of \code{object}.
#' @examples
#' library("MGLM")
#' dist <- "DM"
#' n <- 100
#' p <- 10
#' d <- 5
#' set.seed(118)
#' m <- rbinom(n, 200, 0.8)
#' X <- matrix(rnorm(n * p), n, p)
#' alpha <- matrix(0, p, d)
#' alpha[c(1, 3, 5), ] <- 1
#' Alpha <- exp(X %*% alpha)
#' Y <- rdirmn(size = m, alpha = Alpha)
#' pen <- "group"
#' ngridpt <- 30
#' spmodelfit <- MGLMsparsereg(formula = Y ~ 0 + X, dist = dist, 
#'                             lambda = Inf, penalty = pen)
#' maxlambda <- maxlambda(spmodelfit)
NULL 


maxlambdaMGLM <- function(object) {
  object@maxlambda
}


#' @rdname maxlambda
#' @exportMethod maxlambda
setMethod("maxlambda", "MGLMsparsereg", function(object) maxlambdaMGLM(object))





# extract degrees of freedom from MGLMsparsereg class
##============================================================## 

#' @name dof 
#' @title Extract degrees of freedom  
#' @description \code{dof} extracts the degrees of freedom of the estimated parameter 
#' from the object of class \code{MGLMsparsereg}. 
#' @param object an object of class \code{MGLMsparsereg} 
#' @return Returns degrees of freedom of \code{object}.
#' @examples
#' library("MGLM")
#' dist <- "DM"
#' n <- 100
#' p <- 10
#' d <- 5
#' set.seed(118)
#' m <- rbinom(n, 200, 0.8)
#' X <- matrix(rnorm(n * p), n, p)
#' alpha <- matrix(0, p, d)
#' alpha[c(1, 3, 5), ] <- 1
#' Alpha <- exp(X %*% alpha)
#' Y <- rdirmn(size = m, alpha = Alpha)
#' pen <- "group"
#' ngridpt <- 30
#' spmodelfit <- MGLMsparsereg(formula = Y ~ 0 + X, dist = dist, 
#'                             lambda = Inf, penalty = pen)
#' df <- dof(spmodelfit)
NULL 


dofMGLM <- function(object) {
  object@Dof
}


#' @rdname dof
#' @exportMethod dof
setMethod("dof", "MGLMsparsereg", function(object) dofMGLM(object))

Try the MGLM package in your browser

Any scripts or data that you put into this service are public.

MGLM documentation built on May 2, 2019, 1:38 p.m.