Description Usage Arguments Details Value Author(s) References See Also Examples
Implements unconditional forecast density estimator for VAR/BVAR/BSVAR models
described in Waggoner and Zha (1999). The unconditional forecasts
place no restriction on the paths of the forecasts
(cf. hc.forecast
). The forecast densities are
estimated as the posterior sample for the VAR/BVAR/BSVAR model using Markov Chain
Monte Carlo with data augmentation to account for the uncertainty of
the forecasts and the parameters. This function DOES account for
parameter uncertainty in the MCMC algorithm.
1 | uc.forecast(varobj, nsteps, burnin, gibbs, exog = NULL)
|
varobj |
VAR or BVAR object produced for a VAR or BVAR
using |
nsteps |
Number of periods in the forecast horizon |
burnin |
Burnin cycles for the MCMC algorithm |
gibbs |
Number of cycles of the Gibbs sampler after the
|
exog |
num.exog x nsteps matrix of the exogenous variable values
for the forecast horizon. If left at the |
Produces a posterior sample of unconstrained VAR/BVAR/BSVAR forecasts via MCMC. This function accounts for the uncertainty of the VAR/BVAR/BSVAR parameters by sampling from them in the computation of the VAR/BVAR/BSVAR forecasts and then regenerating the forecasts. Data augmentation is used to account for the impact of the forecast uncertainty on the parameters.
A list with three components:
yforc |
Forecast sample |
orig.y |
Original endogenous variables time series |
hyperp |
values of the hyperparameters used in the BVAR estimation / MCMC |
Patrick T. Brandt
Brandt, Patrick T. and John R. Freeman. 2006. "Advances in Bayesian Time Series Modeling and the Study of Politics: Theory Testing, Forecasting, and Policy Analysis" Political Analysis 14(1):1-36.
Waggoner, Daniel F. and Tao Zha. 1999. "Conditional Forecasts in Dynamic Multivariate Models" Review of Economics and Statistics, 81(4):639-651.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 | ## Not run:
## Uses the example from Brandt and Freeman 2006. Will not run unless
## you have their data from the Politcal
## Analysis website!
library(MSBVAR) # Brandt's package for Bayesian VAR models
# Read the data and set up as a time series
data <- read.dta("levant.weekly.79-03.dta")
attach(data)
# Set up KEDS data
KEDS.data <- ts(cbind(a2i,a2p,i2a,p2a,i2p,p2i),
start=c(1979,15),
freq=52,
names=c("A2I","A2P","I2A","P2A","I2P","P2I"))
# Select the sample we want to use.
KEDS <- window(KEDS.data, end=c(1988,50))
################################################################################
# Estimate the BVAR models
################################################################################
# Fit a flat prior model
KEDS.BVAR.flat <- szbvar(KEDS, p=6, z=NULL, lambda0=1,
lambda1=1, lambda3=1, lambda4=1, lambda5=0,
mu5=0, mu6=0, nu=0, qm=4, prior=2,
posterior.fit=F)
# Reference prior model -- Normal-IW prior pdf
KEDS.BVAR.informed <- szbvar(KEDS, p=6, z=NULL, lambda0=0.6,
lambda1=0.1, lambda3=2, lambda4=0.5, lambda5=0,
mu5=0, mu6=0, nu=ncol(KEDS)+1, qm=4, prior=0,
posterior.fit=F)
# Set up conditional forecast matrix conditions
nsteps <- 12
a2i.condition <- rep(mean(KEDS[,1]) + sqrt(var(KEDS[,1])) , nsteps)
yhat<-matrix(c(a2i.condition,rep(0, nsteps*5)), ncol=6)
# Set the random number seed so we can replicate the results.
set.seed(11023)
# Conditional forecasts
conditional.forcs.ref <- hc.forecast(KEDS.BVAR.informed, yhat, nsteps,
burnin=3000, gibbs=5000, exog=NULL)
conditional.forcs.flat <- hc.forecast(KEDS.BVAR.flat, yhat, nsteps,
burnin=3000, gibbs=5000, exog=NULL)
# Unconditional forecasts
unconditional.forcs.ref <-uc.forecast(KEDS.BVAR.informed, nsteps,
burnin=3000, gibbs=5000)
unconditional.forcs.flat <- uc.forecast(KEDS.BVAR.flat, nsteps,
burnin=3000, gibbs=5000)
# Set-up and plot the unconditional and conditional forecasts. This
# code pulls for the forecasts for I2P and P2I and puts them into the
# appropriate array for the figures we want to generate.
uc.flat <- NULL
hc.flat <- NULL
uc.ref <- NULL
hc.ref <- NULL
uc.flat$forecast <- unconditional.forcs.flat$forecast[,,5:6]
hc.flat$forecast <- conditional.forcs.flat$forecast[,,5:6]
uc.ref$forecast <- unconditional.forcs.ref$forecast[,,5:6]
hc.ref$forecast <- conditional.forcs.ref$forecast[,,5:6]
par(mfrow=c(2,2), omi=c(0.25,0.5,0.25,0.25))
plot(uc.flat,hc.flat, probs=c(0.16, 0.84), varnames=c("I2P", "P2I"),
compare.level=KEDS[nrow(KEDS),5:6], lwd=2)
plot(hc.ref,hc.flat, probs=c(0.16, 0.84), varnames=c("I2P", "P2I"),
compare.level=KEDS[nrow(KEDS),5:6], lwd=2)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.