Description Usage Arguments Details Value Author(s) References Examples
A function to fit the Multivariate Sparse Group Lasso with an arbitrary group structure using the mixed coordinate descent algorithm.
1 2 |
X.m |
numeric predictor matrix (n by p): columns correspond to predictor variables and rows correspond to samples. Missing values are not allowed. |
Y.m |
numeric predictor matrix (n by q): columns correspond to response variables and rows correspond to samples. Missing values are not allowed. |
grp.WTs |
user specified adaptive group weighting matrix of g by r, for putting different penalization levels on different groups. Missing values are not allowed. |
Pen.L |
user specified single-entry level penalization indictor mateix of p by q. 1 for being penalized and 0 for not. Missing values are not allowed. |
Pen.G |
user specified group level penalization indictor mateix of g by r. 1 for being penalized and 0 for not. Missing values are not allowed. |
PQ.grps |
the group attributing matrix of (p+q) by (gmax+1), where gmax is max number of different groups a single variable belongs to. Each row corresponds to a (predictor or response) varaible, and starts with group indexes the variable belongs to and followed by 999. |
GR.grps |
the variable attributing matrix of (g+r)*(cmax+1), where cmax is max number of variables a single group contains. Each row corresponds to a (predictor or response) group, and starts with variable indexes the group contains to and followed by 999. |
grp_Norm0 |
a numeric matrix (g by r) containing starting L2 group norm values. Should be calculated from the Beta starting value matrix Beta0. |
lam1 |
lasso panelty parameter scaler. |
lam.G |
group penalty parameter matrix (g by r). |
Beta0 |
numeric matrix (p by q) containing starting beta values. By defalt use a zero matrix. |
Uses the mixed coordinate descent algorithm for fitting the multivariate sparse group lasso in a multivariate-response-multiple-predictor linear regression setting, with an arbitrary group structure on the regression coefficient matrix (Li, Nan and Zhu 2014).
A list with five components:
Beta |
the estimated regression coefficient matrix (p by q). |
grpNorm |
the L2 group norm matrix (g by r) of the estimated regression coefficient matrix. |
E |
residual matrix (n by q). |
rss.v |
a vector of length q recording the resisual sum square for each of the q responses. |
rss |
a scaler of overall residual sum of square. |
iter |
a positive interger recording the number of iterations till convergence. |
Yanming Li, Bin Nan, Ji Zhu
Y. Li, B. Nan and J. Zhu (2015) Multivariate sparse group lasso for the multivariate multiple linear regression with an arbitrary group structure. Biometrics. DOI: 10.1111/biom.12292
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 | #####################################################
# Simulate data
#####################################################
set.seed(sample(1:100,1))
G.arr <- c(0,20,20,20,20,20,20,20,20,20,20)
data("Beta.m")
######## generate data set for model fitting
simDataGen<-function(N, Beta, rho, s, G.arr, seed=1){
P<-nrow(Beta)
Q<-ncol(Beta)
gsum<-0
X.m<-NULL
set.seed(seed)
Sig<-matrix(0,P,P)
jstart <-1
for(g in 1:length(G.arr)-1){
X.m<-cbind(X.m, matrix(rnorm(N*G.arr[g+1]),N,G.arr[g+1], byrow=TRUE))
for(i in 2:P){ for(j in jstart: (i-1)){
Sig[i,j]<-rho^(abs(i-j))
Sig[j,i]<-Sig[i,j]
}}
jstart <- jstart + G.arr[g+1]
}
diag(Sig)<-1
R<-chol(Sig)
X.m<-X.m%*%R
SVsum <-0
for (q in 1:Q){SVsum <-SVsum+var(X.m %*% Beta[,q])}
sdr =sqrt(s*SVsum/Q)
E.m <- matrix(rnorm(N*Q,0,sdr),N, Q, byrow=TRUE)
Y.m<-X.m%*%Beta+E.m
return(list(X=X.m, Y=Y.m, E=E.m))
}
N <-150
rho=0.5;
s=4;
Data <- simDataGen(N, Beta.m,rho, s, G.arr, seed=sample(1:100,1))
X.m<-Data$X
Y.m<-Data$Y
############################################################
## fit model for one set of (lam1, lam.G) using example data
############################################################
P <- dim(Beta.m)[1]
Q <- dim(Beta.m)[2]
G <- 10
R <- 10
gmax <- 1
cmax <- 20
GarrStarts <- c(0,20,40,60,80,100,120,140,160,180)
GarrEnds <- c(19,39,59,79,99,119,139,159,179,199)
RarrStarts <- c(0,20,40,60,80,100,120,140,160,180)
RarrEnds <- c(19,39,59,79,99,119,139,159,179,199)
tmp <- FindingPQGrps(P, Q, G, R, gmax, GarrStarts, GarrEnds, RarrStarts, RarrEnds)
PQgrps <- tmp$PQgrps
tmp1 <- Cal_grpWTs(P, Q, G, R, gmax, PQgrps)
grpWTs <- tmp1$grpWTs
tmp2 <- FindingGRGrps(P, Q, G, R, cmax, GarrStarts, GarrEnds, RarrStarts, RarrEnds)
GRgrps <- tmp2$GRgrps
Pen_L <- matrix(rep(1,P*Q),P,Q, byrow=TRUE)
Pen_G <- matrix(rep(1,G*R),G,R, byrow=TRUE)
grp_Norm0 <- matrix(rep(0, G*R), nrow=G, byrow=TRUE)
MSGLassolam1 <- 1.6
MSGLassolamG <- 0.26
MSGLassolamG.m <- matrix(rep(MSGLassolamG, G*R),G,R,byrow=TRUE)
system.time(try <-MSGLasso(X.m, Y.m, grpWTs, Pen_L, Pen_G, PQgrps, GRgrps, grp_Norm0,
MSGLassolam1, MSGLassolamG.m, Beta0=NULL))
## Not run:
################################################
## visulizing model fitting results
################################################
########visulizing selection effect using heatmaps
MYplotBW <- function(Beta){
colorNP <- ceiling(abs(max(Beta)))+2
ColorValueP <- colorRampPalette(c("gray50", "black"))(colorNP)
colorNN <- ceiling(abs(min(Beta)))+2
ColorValueN <- colorRampPalette(c("gray50", "white"))(colorNN)
P <-nrow(Beta)
Q <-ncol(Beta)
Xlim <- c(0,2*(P+1))
Ylim <- c(0,2*(Q+1))
plot(0, type="n", xlab="", ylab="", xlim=Xlim, ylim=Ylim, cex.lab=1.0,
bty="n", axes=FALSE)
for (p in 1:P){
for (q in 1:Q){
k0 <- Beta[p,q]
if(k0==0){
rect(2*(P-p+1)-1,2*(Q-q+1)-1, 2*(P-p+1)+1, 2*(Q-q+1)+1, col="white", border=NA)
}
if(k0>0){
k <- ceiling(k0)+1
if(k>2) {k <- k+1}
rect(2*(P-p+1)-1,2*(Q-q+1)-1, 2*(P-p+1)+1, 2*(Q-q+1)+1,
col="black", border=NA)
}
if(k0<0){
k <- ceiling(abs(k0))+1
if(k>2) {k <- k+1}
rect(2*(P-p+1)-1,2*(Q-q+1)-1, 2*(P-p+1)+1, 2*(Q-q+1)+1,
col="black", border=NA)
}
}
}
rect(1,1,2*P, 2*Q, lty=2)
}
MYplotBW(try$Beta)
rect(1,1,40,40, lty=2)
rect(41,41,80,80, lty=2)
rect(81,81,120,120, lty=2)
rect(121,121,160,160, lty=2)
rect(161,161,200,200, lty=2)
rect(201,201,240,240, lty=2)
rect(241,241,280,280, lty=2)
rect(281,281,320,320, lty=2)
rect(361,1,400,400, lty=2)
######## visulizing the true Beta matrix
#X11()
MYplotBW(Beta.m)
rect(1,1,40,40, lty=2)
rect(41,41,80,80, lty=2)
rect(81,81,120,120, lty=2)
rect(121,121,160,160, lty=2)
rect(161,161,200,200, lty=2)
rect(201,201,240,240, lty=2)
rect(241,241,280,280, lty=2)
rect(281,281,320,320, lty=2)
rect(361,1,400,400, lty=2)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.