Nothing
#' Identification of confirmed and sequential disability worsening and improvement events
#' @description Identify sequential disability worsening and improvement events confirmed over a specified time period, using roving baseline EDSS. The identification of events is based on clinical visit records, with each record including entries for patient code, visit date, EDSS score, and days since the most recent relapse.
#' If a baseline EDSS score is not provided, it is determined as the first EDSS score recorded in the dataset outside 30 days (the default) of a relapse.
#' Following a confirmed disability worsening or improvement event, the minimum EDSS score within the confirmation period, regardless of the recency of a relapse, becomes the new baseline EDSS score.
#' @references Sharmin, et al. European Journal of Neurology 2022;29(8):2321-2334.
#' @param Visits A data frame consisting of 6 columns: ID, dateEDSS, EDSS, daysPostRelapse (days since most recent relapse), bEDSS (baseline EDSS score), base.date (date of bEDSS).
#' @param mconf Confirmation period (days) for EDSS worsening or improvement.
#' @param tRelapse Minimum time in days since the most recent relapse to EDSS assessment.
#' @examples
#' data(SampleData)
#' output<-CDEseq(SampleData)
#' @return A data frame.
#' @export
CDEseq <- function(Visits, mconf=3*30.25, tRelapse=30) {
if ( !all(with(Visits, is.element(c("ID", "dateEDSS", "EDSS", "daysPostRelapse"), names(Visits)))) ) {
stop("Input requires a 'Visits' data frame with columns 'ID', 'dateEDSS', 'EDSS', 'daysPostRelapse'.")
}
Visits$ID <- as.character(Visits$ID)
Visits$dateEDSS <- as.Date(Visits$dateEDSS, "%Y-%m-%d")
Visits$daysPostRelapse <- abs(Visits$daysPostRelapse)
Visits <- Visits[!is.na(Visits$EDSS),]
Pats <- Visits$ID[!duplicated(Visits$ID)]
n <- length(Pats)
CDWseqlist <- NULL
CDIseqlist <- NULL
for (i in 1:n) {
if ((i/n)==0.2|(i/n)==0.4|(i/n)==0.6|(i/n)==0.8|(i/n)==1.00) message("Processing patient #", i, "/", n, " (", round(i*100/n, 2), "%)")
Visits.sav <- subset(Visits, Visits$ID==Pats[i])
# Define bEDSS
if(all(is.na(Visits.sav$bEDSS))) {
Visits.sn.base <- subset(Visits.sav, Visits.sav$daysPostRelapse>tRelapse | is.na(Visits.sav$daysPostRelapse))
Visits.sn.base <- Visits.sn.base[order(Visits.sn.base$ID, as.numeric(Visits.sn.base$dateEDSS)), ]
Visits.sav$bEDSS <- Visits.sn.base$EDSS[1]
Visits.sav$base.date <- as.Date(Visits.sn.base$dateEDSS[1])
} else {
Visits.sav$base.date <- as.Date(Visits.sav$base.date, "%Y-%m-%d")
}
# Remove visits recorded prior to the date of baseline
Visits.sav <- subset(Visits.sav, Visits.sav$dateEDSS>=Visits.sav$base.date)
Visits.sav <- Visits.sav[order(Visits.sav$ID, as.numeric(Visits.sav$dateEDSS)), ]
# Define timepoint
Visits.sav$timepoint <- difftime(Visits.sav$dateEDSS, Visits.sav$base.date, units=(c="days"))
Visits.sav$timepoint <- round(Visits.sav$timepoint, 0)
# Define disability event
Visits.s <- Visits.sav
repeat {
if (all(is.na(Visits.s$bEDSS))) {break}
Visits.s$dEDSS <- Visits.s$EDSS-Visits.s$bEDSS
Visits.s$progression <- ifelse(Visits.s$bEDSS==0.0, ifelse(Visits.s$dEDSS>=1.5, 1, 0), ifelse(Visits.s$bEDSS<6.0, ifelse(Visits.s$dEDSS>=1, 1, 0), ifelse(Visits.s$dEDSS>=0.5, 1, 0)))
Visits.s$regression <- ifelse(Visits.s$bEDSS<=1.5, ifelse(Visits.s$dEDSS<=-1.5, 1, 0), ifelse(Visits.s$bEDSS<=6.0, ifelse(Visits.s$dEDSS<=-1, 1, 0), ifelse(Visits.s$dEDSS<=-0.5, 1, 0)))
if(Visits.s$progression[1]==1) {
disability.event <- 1
} else if (Visits.s$regression[1]==1){
disability.event <- -1
} else if(Visits.s$progression[1]==0 & Visits.s$regression[1]==0) {
disability.event <- 0
}
if(disability.event>0){ ################# EDSS worsening #################
CL <- Visits.s[!is.na(Visits.s$dEDSS),]
CL <- rbind(CL, CL[1,])
CL$progression[length(CL$progression)] <- 0
CL$rownr <- c(1:nrow(CL))
zeros <- which(CL$progression %in% 0)
norel <- which(CL$daysPostRelapse>tRelapse | is.na(CL$daysPostRelapse))
for(j in 1:nrow(CL)) {
if (CL$progression[j]==0) (CL$last.1[j] <- NA) else
(CL$last.1[j] <- max(norel[norel<min(zeros[zeros>CL$rownr[j]])]))
}
rm(zeros, norel, j)
CL$sust.prog <- CL$timepoint[match(CL$last.1, CL$rownr)]-CL$timepoint
CL <- subset(CL, CL$sust.prog>=mconf)
CP <- subset(CL[1,], select=-c(rownr, last.1))
if (nrow(CL)==0) {break}
CDWseqlist <- rbind(CDWseqlist, CP)
Visits.s <- subset(Visits.s, Visits.s$timepoint>=CP$timepoint)
# re-set EDSS baseline (minimum EDSS within the confirmation period)
CL$prog.time <- CL$timepoint-CL$timepoint[1]
min2 <- pmin(CL$EDSS[1], CL$EDSS[2])
CL <- subset(CL, CL$prog.time<=mconf)
min.prog <- min(CL$EDSS)
Visits.s$bEDSS <- pmin(min2, min.prog, na.rm=T)
Visits.s$base.date <- as.Date(Visits.s$dateEDSS[match(Visits.s$bEDSS, Visits.s$EDSS)])
Visits.s <- subset(Visits.s, Visits.s$dateEDSS>=Visits.s$base.date)
} else if (disability.event<0) { ################# EDSS improvement #################
CL <- Visits.s[!is.na(Visits.s$dEDSS),]
CL <- rbind(CL, CL[1,])
CL$regression[length(CL$regression)] <- 0
CL$rownr <- c(1:nrow(CL))
zeros <- which(CL$regression %in% 0)
for(j in 1:nrow(CL)) {
if (CL$regression[j]==0) (CL$last.1[j] <- NA) else
(CL$last.1[j] <- max(CL$rownr[CL$rownr<min(zeros[zeros>CL$rownr[j]])]))
}
rm(zeros, j)
CL$sust.reg <- CL$timepoint[match(CL$last.1, CL$rownr)]-CL$timepoint
CL <- subset(CL, CL$sust.reg>=mconf)
CP <- subset(CL[1,], select=-c(rownr, last.1))
if (nrow(CL)==0) {break}
CDIseqlist <- rbind(CDIseqlist, CP)
Visits.s <- subset(Visits.s, Visits.s$timepoint>=CP$timepoint)
# re-set EDSS baseline (minimum EDSS within the confirmation period)
CL$reg.time <- CL$timepoint-CL$timepoint[1]
min2 <- pmin(CL$EDSS[1], CL$EDSS[2])
CL <- subset(CL, CL$reg.time<=mconf)
min.reg <- min(CL$EDSS)
Visits.s$bEDSS <- pmin(min2, min.reg, na.rm=T)
Visits.s$base.date <- as.Date(Visits.s$dateEDSS[match(Visits.s$bEDSS, Visits.s$EDSS)])
Visits.s <- subset(Visits.s, Visits.s$dateEDSS>=Visits.s$base.date)
} else { ################# NEITHER worsening NOR improvement #################
Visits.s <- Visits.s[-1,]
}
if (nrow(Visits.s)<=1) {break}
}
}
rm(n, i, Visits.sav)
if (exists("CL")) { rm(CL) }
if (exists("min2")) { rm(min2) }
if (exists("min.prog")) { rm(min.prog) }
if (exists("min.reg")) { rm(min.reg) }
# Output: CDEseq dataframe
CDWseqlist$conc <- paste(CDWseqlist$ID, CDWseqlist$dateEDSS)
CDWseqlist <- CDWseqlist[!duplicated(CDWseqlist$conc),]
CDWseqlist <- subset(CDWseqlist, select=c(ID, bEDSS, base.date, EDSS, dateEDSS, dEDSS, timepoint, sust.prog))
CDWseqlist <- CDWseqlist[which(as.numeric(as.character(CDWseqlist$timepoint))>0),]
CDWseqlist <- subset(CDWseqlist, select= -timepoint)
rownames(CDWseqlist) <- NULL
CDIseqlist$conc <- paste(CDIseqlist$ID, CDIseqlist$dateEDSS)
CDIseqlist <- CDIseqlist[!duplicated(CDIseqlist$conc),]
CDIseqlist <- subset(CDIseqlist, select=c(ID, bEDSS, base.date, EDSS, dateEDSS, dEDSS, timepoint, sust.reg))
CDIseqlist <- CDIseqlist[which(as.numeric(as.character(CDIseqlist$timepoint))>0),]
CDIseqlist <- subset(CDIseqlist, select= -timepoint)
rownames(CDIseqlist) <- NULL
attr(CDWseqlist, 'mconf') <- mconf
attr(CDWseqlist, 'tRelapse') <- tRelapse
attr(CDWseqlist, 'timestamp') <- paste(format(Sys.time(),"%Y%m%d%H%M"))
attr(CDIseqlist, 'mconf') <- mconf
attr(CDIseqlist, 'tRelapse') <- tRelapse
attr(CDIseqlist, 'timestamp') <- paste(format(Sys.time(),"%Y%m%d%H%M"))
CDEseqlist <- list(CDWseqlist, CDIseqlist)
return(CDEseqlist)
}
globalVariables(c("ID", "dateEDSS", "EDSS", "daysPostRelapse", "bEDSS", "base.date", "timepoint", "dEDSS", "sust.prog", "sust.reg",
"progression", "regression", "rownr", "last.1"))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.